Temperature measurements in heavily-sooting ethylene/air flames using synchrotron x-ray fluorescence of krypton
Tài liệu tham khảo
Malmborg, 2017, Evolution of in-cylinder diesel engine soot and emission characteristics investigated with online aerosol mass spectrometry, Environ. Sci. and Technol., 51, 1876, 10.1021/acs.est.6b03391
Musculus, 2010, In-cylinder spray, mixing, combustion, and pollutant-formation processes in conventional and low-temperature combustion diesel engines, 644
Bracco, 2007, The wet compression technology for gas turbine power plants: thermodynamic model, Appl. Therm. Eng., 27, 699, 10.1016/j.applthermaleng.2006.10.013
Meierhofer, 2021, Synthesis of metal oxide nanoparticles in flame sprays: review on process technology, modeling, and diagnostics, Energy Fuels, 35, 5495, 10.1021/acs.energyfuels.0c04054
Johansson, 2018, Resonance-stabalized hydrocarbon-radical chain reactions may explain soot inception and growth, Science, 361, 997, 10.1126/science.aat3417
Bond, 2013, Bounding the role of black carbon in the climate system: a scientific assessment, J. Geophys. Res., Atmos., 118, 5380, 10.1002/jgrd.50171
Stanaway, 2018, Lancet, 392, 1923, 10.1016/S0140-6736(18)32225-6
Kempema, 2018, Effect of soot self-absorption on color-ratio pyrometry in laminar coflow diffusion flames, Opt. Lett., 43, 1103, 10.1364/OL.43.001103
Kempema, 2014, Quantitative Rayleigh thermometry for high background scattering applications with structured laser illumination planar imaging, Appl. Opt., 53, 6688, 10.1364/AO.53.006688
Sahoo, 2019, Two-dimensional temperature field imaging in laminar sooting flames using a two-line Kr PLIF approach, Appl. Phys. B, 125, 1, 10.1007/s00340-019-7280-2
Eckberth, 1979, CARS thermometry in a sooting flame, Combust. Flame, 36, 87, 10.1016/0010-2180(79)90048-8
Roy, 2010, Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows, Prog. Energy Combust., 36, 280, 10.1016/j.pecs.2009.11.001
Rock, 2020, WIDECARS multi-parameter measurements in premixed ethylene-air flames using a wavelength stable ultrabroadband dye laser, Appl. Opt., 59, 2649, 10.1364/AO.386378
Satija, 2019, CARS thermometry in laminar sooting ethylene-air co-flow diffusion flames with nitrogen dilution, Combust. Flame, 208, 37, 10.1016/j.combustflame.2019.06.025
Kastengren, 2014, Synchrotron X-ray techniques for fluid dynamics, Exp. Fluids, 55, 1, 10.1007/s00348-014-1686-8
Jauncey, 1924, The scattering of x-rays and Bragg's law, Proc. Natl. Acad. Sci. USA, 10, 57, 10.1073/pnas.10.2.57
Als-Nielsen, 2011
Hubbell, 2004
Montgomery, 2022, In situ temperature measurements in sooting methane/air flames using synchrotron x-ray flourescence of seeded krypton atoms, Sci. Adv., 8, 10.1126/sciadv.abm7947
Hansen, 2019, Investigation of sampling-probe distorted temperature fields with x-ray fluorescence spectroscopy, Proc. Combust. Inst., 37, 1401, 10.1016/j.proci.2018.05.034
International Sooting Flame (ISF) Workshop. https://www.adelaide.edu.au/cet/isfworkshop/(accessed October 4 2021).
Montgomery, 2019, Analyzing the robustness of the yield sooting index as a measure of sooting tendency, Proc. Combust. Inst., 37, 911, 10.1016/j.proci.2018.06.105
Kempema, 2016, Combined optical and TEM investigations for a detailed characterization of soot aggregate properties in a laminar coflow diffusion flame, Combust. Flame, 164, 373, 10.1016/j.combustflame.2015.12.001
Bodor, 2019, A post processing technique to predict primary particle size of sooting flames based on a chemical discrete sectional model: application to diluted coflow flames, Combust. Flame, 208, 122, 10.1016/j.combustflame.2019.06.008
Botero, 2019, Experimental and numerical study of the evolution of soot primary particles in a diffusion flame, Proc. Combust. Inst., 37, 2047, 10.1016/j.proci.2018.06.185
Bartos, 2019, Soot inception in laminar coflow diffusion flames, Combust. Flame, 205, 180, 10.1016/j.combustflame.2019.03.026
Franzelli, 2019, Multi-diagnostic soot measurements in a laminar diffusion flame to assess the ISF database consistency, Proc. Combust. Inst., 37, 1355, 10.1016/j.proci.2018.05.062
Smooke, 2004, Investigation of the transition from lightly sooting towards heavily sooting co-flow ethylene diffusion flames, Combust. Theory Model., 8, 593, 10.1088/1364-7830/8/3/009
Montgomery, 2020, Effect of ammonia addition on suppressing soot formation in methane co-flow diffusion flames, Proc. Combust. Inst., 2497
Kuhn, 2011, Soot and thin-filament pyrometry using a color digital camera, Proc. Combust. Inst., 33, 743, 10.1016/j.proci.2010.05.006
Smooke, 2005, Soot formation in laminar diffusion flames, Combust. Flame, 143, 613, 10.1016/j.combustflame.2005.08.028
Deslattes, 2003, X-ray transition energies: new approach to a comprehensive evaluation, Rev. Mod. Phys., 75, 35, 10.1103/RevModPhys.75.35
Kodre, 1986, The Auger-Raman effect and the k-shell fluorescence yield of krypton, Z. Phys. D Atom. Mol. Cl., 2, 173, 10.1007/BF01429070
Kostroun, 1971, Atomic radiation transition probabilities to the 1s state and theoretical k-shell fluorescence yields, Phys. Rev. A, 3, 533, 10.1103/PhysRevA.3.533
Kempema, 2016, Boundary condition thermometry using a thermographic-phosphor-coated thin filament, Appl. Opt., 55, 4691, 10.1364/AO.55.004691
Desjardins, 2008, High order conservative finite difference scheme for variable density low Mach number turbulent flows, J. Comput. Phys., 227, 7125, 10.1016/j.jcp.2008.03.027
Herrmann, 2006, Flux corrected finite volume scheme for preserving scalar boundedness in reacting large-eddy simulations, AIAA J., 44, 2879, 10.2514/1.18235
Savard, 2015, A computationally-efficient, semi-implicit, iterative method for the time-integration of reacting flows with stiff chemistry, J. Comput. Phys., 295, 740, 10.1016/j.jcp.2015.04.018
Blanquart, 2009, Chemical mechanism for high temperature combustion of engine relevant fuels with emphasis on soot precursors, Combust. Flame, 156, 588, 10.1016/j.combustflame.2008.12.007
Narayanaswamy, 2010, A consistent chemical mechanism for oxidation of substituted aromatic species, Combust. Flame, 157, 1879, 10.1016/j.combustflame.2010.07.009
Kwon, 2019, Numerical investigation of the pressure-dependence of yield sooting indices for n-alkane and aromatic species, Fuel, 254, 10.1016/j.fuel.2019.05.157
Chen, 2012, Experimental and modeling study of the effects of adding oxygenated fuels to premixed n-heptane flames, Combust. Flame, 159, 2324, 10.1016/j.combustflame.2012.02.020
Jain, 2019, Experimental and numerical study of variable oxygen index effects on soot yield and distribution in laminar co-flow diffusion flames, Proc. Combust. Inst., 37, 859, 10.1016/j.proci.2018.05.118
Goos, 2010
Bird, 2006
Sakurai, 2016, Densitometry and temperature measurement of combustion gas by x-ray Compton scattering, J. Synchrotron Radiat., 23, 617, 10.1107/S1600577516001740