Temperature measurements in heavily-sooting ethylene/air flames using synchrotron x-ray fluorescence of krypton

Combustion and Flame - Tập 257 - Trang 112494 - 2023
Colin Banyon1, Matthew J. Montgomery2, Hyunguk Kwon3, Alan L. Kastengren4, Lisa D. Pfefferle2, Travis Sikes1, Yuan Xuan5, Charles S. McEnally2, Robert S. Tranter1
1Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont IL, United States
2Department of Chemical and Environmental Engineering, Yale University, New Haven CT, United States
3Department of Chemical Engineering, Pennsylvania State University, University Park PA, United States
4X-ray Science Division, Argonne National Laboratory, Lemont IL, United States
5Department of Mechanical Engineering, Pennsylvania State University, University Park PA, United States

Tài liệu tham khảo

Malmborg, 2017, Evolution of in-cylinder diesel engine soot and emission characteristics investigated with online aerosol mass spectrometry, Environ. Sci. and Technol., 51, 1876, 10.1021/acs.est.6b03391 Musculus, 2010, In-cylinder spray, mixing, combustion, and pollutant-formation processes in conventional and low-temperature combustion diesel engines, 644 Bracco, 2007, The wet compression technology for gas turbine power plants: thermodynamic model, Appl. Therm. Eng., 27, 699, 10.1016/j.applthermaleng.2006.10.013 Meierhofer, 2021, Synthesis of metal oxide nanoparticles in flame sprays: review on process technology, modeling, and diagnostics, Energy Fuels, 35, 5495, 10.1021/acs.energyfuels.0c04054 Johansson, 2018, Resonance-stabalized hydrocarbon-radical chain reactions may explain soot inception and growth, Science, 361, 997, 10.1126/science.aat3417 Bond, 2013, Bounding the role of black carbon in the climate system: a scientific assessment, J. Geophys. Res., Atmos., 118, 5380, 10.1002/jgrd.50171 Stanaway, 2018, Lancet, 392, 1923, 10.1016/S0140-6736(18)32225-6 Kempema, 2018, Effect of soot self-absorption on color-ratio pyrometry in laminar coflow diffusion flames, Opt. Lett., 43, 1103, 10.1364/OL.43.001103 Kempema, 2014, Quantitative Rayleigh thermometry for high background scattering applications with structured laser illumination planar imaging, Appl. Opt., 53, 6688, 10.1364/AO.53.006688 Sahoo, 2019, Two-dimensional temperature field imaging in laminar sooting flames using a two-line Kr PLIF approach, Appl. Phys. B, 125, 1, 10.1007/s00340-019-7280-2 Eckberth, 1979, CARS thermometry in a sooting flame, Combust. Flame, 36, 87, 10.1016/0010-2180(79)90048-8 Roy, 2010, Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows, Prog. Energy Combust., 36, 280, 10.1016/j.pecs.2009.11.001 Rock, 2020, WIDECARS multi-parameter measurements in premixed ethylene-air flames using a wavelength stable ultrabroadband dye laser, Appl. Opt., 59, 2649, 10.1364/AO.386378 Satija, 2019, CARS thermometry in laminar sooting ethylene-air co-flow diffusion flames with nitrogen dilution, Combust. Flame, 208, 37, 10.1016/j.combustflame.2019.06.025 Kastengren, 2014, Synchrotron X-ray techniques for fluid dynamics, Exp. Fluids, 55, 1, 10.1007/s00348-014-1686-8 Jauncey, 1924, The scattering of x-rays and Bragg's law, Proc. Natl. Acad. Sci. USA, 10, 57, 10.1073/pnas.10.2.57 Als-Nielsen, 2011 Hubbell, 2004 Montgomery, 2022, In situ temperature measurements in sooting methane/air flames using synchrotron x-ray flourescence of seeded krypton atoms, Sci. Adv., 8, 10.1126/sciadv.abm7947 Hansen, 2019, Investigation of sampling-probe distorted temperature fields with x-ray fluorescence spectroscopy, Proc. Combust. Inst., 37, 1401, 10.1016/j.proci.2018.05.034 International Sooting Flame (ISF) Workshop. https://www.adelaide.edu.au/cet/isfworkshop/(accessed October 4 2021). Montgomery, 2019, Analyzing the robustness of the yield sooting index as a measure of sooting tendency, Proc. Combust. Inst., 37, 911, 10.1016/j.proci.2018.06.105 Kempema, 2016, Combined optical and TEM investigations for a detailed characterization of soot aggregate properties in a laminar coflow diffusion flame, Combust. Flame, 164, 373, 10.1016/j.combustflame.2015.12.001 Bodor, 2019, A post processing technique to predict primary particle size of sooting flames based on a chemical discrete sectional model: application to diluted coflow flames, Combust. Flame, 208, 122, 10.1016/j.combustflame.2019.06.008 Botero, 2019, Experimental and numerical study of the evolution of soot primary particles in a diffusion flame, Proc. Combust. Inst., 37, 2047, 10.1016/j.proci.2018.06.185 Bartos, 2019, Soot inception in laminar coflow diffusion flames, Combust. Flame, 205, 180, 10.1016/j.combustflame.2019.03.026 Franzelli, 2019, Multi-diagnostic soot measurements in a laminar diffusion flame to assess the ISF database consistency, Proc. Combust. Inst., 37, 1355, 10.1016/j.proci.2018.05.062 Smooke, 2004, Investigation of the transition from lightly sooting towards heavily sooting co-flow ethylene diffusion flames, Combust. Theory Model., 8, 593, 10.1088/1364-7830/8/3/009 Montgomery, 2020, Effect of ammonia addition on suppressing soot formation in methane co-flow diffusion flames, Proc. Combust. Inst., 2497 Kuhn, 2011, Soot and thin-filament pyrometry using a color digital camera, Proc. Combust. Inst., 33, 743, 10.1016/j.proci.2010.05.006 Smooke, 2005, Soot formation in laminar diffusion flames, Combust. Flame, 143, 613, 10.1016/j.combustflame.2005.08.028 Deslattes, 2003, X-ray transition energies: new approach to a comprehensive evaluation, Rev. Mod. Phys., 75, 35, 10.1103/RevModPhys.75.35 Kodre, 1986, The Auger-Raman effect and the k-shell fluorescence yield of krypton, Z. Phys. D Atom. Mol. Cl., 2, 173, 10.1007/BF01429070 Kostroun, 1971, Atomic radiation transition probabilities to the 1s state and theoretical k-shell fluorescence yields, Phys. Rev. A, 3, 533, 10.1103/PhysRevA.3.533 Kempema, 2016, Boundary condition thermometry using a thermographic-phosphor-coated thin filament, Appl. Opt., 55, 4691, 10.1364/AO.55.004691 Desjardins, 2008, High order conservative finite difference scheme for variable density low Mach number turbulent flows, J. Comput. Phys., 227, 7125, 10.1016/j.jcp.2008.03.027 Herrmann, 2006, Flux corrected finite volume scheme for preserving scalar boundedness in reacting large-eddy simulations, AIAA J., 44, 2879, 10.2514/1.18235 Savard, 2015, A computationally-efficient, semi-implicit, iterative method for the time-integration of reacting flows with stiff chemistry, J. Comput. Phys., 295, 740, 10.1016/j.jcp.2015.04.018 Blanquart, 2009, Chemical mechanism for high temperature combustion of engine relevant fuels with emphasis on soot precursors, Combust. Flame, 156, 588, 10.1016/j.combustflame.2008.12.007 Narayanaswamy, 2010, A consistent chemical mechanism for oxidation of substituted aromatic species, Combust. Flame, 157, 1879, 10.1016/j.combustflame.2010.07.009 Kwon, 2019, Numerical investigation of the pressure-dependence of yield sooting indices for n-alkane and aromatic species, Fuel, 254, 10.1016/j.fuel.2019.05.157 Chen, 2012, Experimental and modeling study of the effects of adding oxygenated fuels to premixed n-heptane flames, Combust. Flame, 159, 2324, 10.1016/j.combustflame.2012.02.020 Jain, 2019, Experimental and numerical study of variable oxygen index effects on soot yield and distribution in laminar co-flow diffusion flames, Proc. Combust. Inst., 37, 859, 10.1016/j.proci.2018.05.118 Goos, 2010 Bird, 2006 Sakurai, 2016, Densitometry and temperature measurement of combustion gas by x-ray Compton scattering, J. Synchrotron Radiat., 23, 617, 10.1107/S1600577516001740