Efferent neurotransmission of circadian rhythms inLimulus lateral eye

Zeitschrift für vergleichende Physiologie - Tập 164 - Trang 95-105 - 1988
Leonard Kass1, Janice L. Pelletier2, George H. Renninger3, Robert B. Barlow4,5
1Department of Zoology, University of Maine, Orono, USA
2Massachusetts General Hospital, Boston, USA
3Biophysics Group, Department of Physics, University of Guelph, Guelph, Canada
4Institute for Sensory Research, Syracuse University, Syracuse
5The Marine Biological Laboratory, Woods Hole, USA

Tóm tắt

We investigated efferent neurotransmission in theLimulus lateral eye by studying the action of pharmacological agents on responses of photoreceptor cells in vitro. We recorded transmembrane potentials from single cells in slices of retina that were excised during the day and maintained for several days in a culture medium. Potentials recorded in the absence of pharmacological agents resemble those recorded from cells in vivo during the day. Octopamine, a putative efferent neurotransmitter, induced changes in photoreceptor potentials that mimicked in part those generated at night by a circadian clock located in the brain. Specifically, octopamine (100 to 500 μM) decreased the frequency of occurrence of quantum bumps in the dark and increased the amplitude of photoreceptor responses to intermediate and high light intensities. Similar actions were produced by naphazoline (25 to 100 (μM, potent agonist of octopamine), forskolin (8 to 400 μM, activator of adenylate cyclase), IBMX (1 mM, inhibitor of phosphodiesterase), and 8-bromo-cAMP (500 μM, analogue of cAMP). 8-bromo-cGMP (500 μM, analogue of cGMP) decreased the rate of spontaneous quantum bumps only. Our results support the hypothesis that (1) octopamine is an efferent neurotransmitter of circadian rhythms in theLimulus eye and that (2) it activates adenylate cyclase to increase levels of the second messenger, cAMP, in photoreceptor cells. Circadian changes in photoreceptor responses to moderate intensities may be a specific action of cAMP, since cGMP has no effect. Circadian changes in the rate of spontaneous quantum bumps may involve a less specific intermediate, since both cAMP and cGMP reduce bump rate. Characteristics of the retinal slice preparation precluded a detailed study of the effects of pharmacological agents on retinal morphology.

Tài liệu tham khảo