On biased random walks, corrupted intervals, and learning under adversarial design
Tóm tắt
We tackle some fundamental problems in probability theory on corrupted random processes on the integer line. We analyze when a biased random walk is expected to reach its bottommost point and when intervals of integer points can be detected under a natural model of noise. We apply these results to problems in learning thresholds and intervals under a new model for learning under adversarial design.
Tài liệu tham khảo
Agarwal, A., Duchi, J.C.: The generalization ability of online algorithms for dependent data. IEEE Trans. Inf. Theory 59(1), 573–587 (2013)
Anava, O., Hazan, E., Mannor, S., Shamir, O.: Online learning for time series prediction. In: Shalev-shwartz, S., Steinwart, I. (eds.) COLT 2013 - The 26th Annual Conference on Learning Theory, June 12-14 Princeton University, NJ, USA, volume 30 of JMLR Workshop and Conference Proceedings, pp. 172–184, JMLR.org (2013)
Angluin, D., Laird, P.D.: Learning from noisy examples. Mach. Learn. 2(4), 343–370 (1987)
Audiffren, J., Ralaivola, L.: Cornering stationary and restless mixing bandits with remix-ucb. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015, December 7-12, 2015, pp. 3339–3347, Montreal, Quebec, Canada (2015)
Bateman, H.: Higher Transcendental Functions. Krieger Pub Co. ISBN 0898742064 (1981)
Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge University Press, Cambridge (2006)
Cover, T.M.: The number of linearly inducible orderings of points in d-space. SIAM J. Appl. Math. 15(2), 434–439 (1967)
Gamarnik, D.: Extension of the PAC framework to finite and countable Markov chains. IEEE Trans. Inform. Theory 49(1), 338–345 (2003)
Gofer, E.: Machine Learning Algorithms with Applications in Finance. PhD thesis, Tel Aviv University (2014)
Gradshteyn, I. S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 7th edn. Elsevier/Academic Press, Amsterdam (2007). ISBN 978-0-12-373637-6; 0-12-373637-4. Translated from the Russian, Translation Edited and with a Preface by Alan Jeffrey and Daniel Zwillinger With One CD-ROM, Windows, Macintosh and UNIX)
Harik, G., Cantú-Paz, E., Goldberg, D.E., Miller, B.L.: The gambler’s ruin problem, genetic algorithms, and the sizing of populations. Evol. Comput. 7(3), 231–253 (1999)
Herbrich, R., Williamson, R.C.: Algorithmic luckiness. J. Mach. Learn. Res. 3, 175–212 (2002)
Karandikar, R.L., Vidyasagar, M.: Rates of uniform convergence of empirical means with mixing processes. Statist. Probab. Lett. 58(3), 297–307 (2002). ISSN 0167-7152
Kearns, M.J.: Efficient noise-tolerant learning from statistical queries. J. ACM 45(6), 983–1006 (1998)
Kearns, M.J., Schapire, R.E.: Efficient distribution-free learning of probabilistic concepts. J. Comput. Syst. Sci. 48(3), 464–497 (1994). ISSN 0022-0000
Kearns, M.J., Schapire, R.E., Sellie, L.: Toward efficient agnostic learning. Mach. Learn. 17(2-3), 115–141 (1994)
Kearns, M., Vazirani, U.: An introduction to computational learning theory. The MIT press (1997)
Koolen, W.M., Vovk, V.: Buy low, sell high. Theor. Comput. Sci. 558, 144–158 (2014). ISSN 0304-3975. https://doi.org/10.1016/j.tcs.2014.09.030, http://www.sciencedirect.com/science/article/pii/S0304397514007087. Algorithmic Learning Theory
Koshy, T.: Catalan numbers with applications. Oxford University Press, Oxford (2009). ISBN 978-0-19-533454-8
Kuznetsov, V., Mohri, M.: Learning theory and algorithms for forecasting non-stationary time series. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015, December 7-12, 2015, pp. 541–549, Montreal, Quebec, Canada (2015)
Levin, D.A., Peres, Y., Wilmer, E.L.: Markov chains and mixing times. American Mathematical Society, Providence (2017). ISBN 978-1-4704-2962-1. Second edition of [ MR2466937], With a chapter on “Coupling from the past” by James G. Propp and David B. Wilson
London, B., Huang, B., Getoor, L.: Improved generalization bounds for large-scale structured prediction. In: NIPS Workshop on Algorithmic and Statistical Approaches for Large Social Networks (2012)
London, B., Huang, B., Taskar, B., Getoor, L.: Collective stability in structured prediction: Generalization from one example. In: proceedings of the 30th International Conference on Machine Learning (ICML-13) (2013)
Massart, P., Nédélec, É., et al.: Risk bounds for statistical learning. Ann. Stat. 34(5), 2326–2366 (2006)
Mohri, M., Rostamizadeh, A.: Rademacher complexity bounds for non-i.i.d. processes. In: Neural Information Processing Systems (NIPS) (2008)
Mohri, M., Rostamizadeh, A.: Stability bounds for stationary phi-mixing and beta-mixing processes. J. Mach. Learn. Res. 11, 789–814 (2010)
Rostamizadeh, A., Mohri, M.: Stability bounds for non-i.i.d. processes. In: Neural Information Processing Systems (NIPS) (2007)
Rudelson, M., Vershynin, R.: Smallest singular value of a random rectangular matrix. Commun. Pure Appl. Math. 62(12), 1707–1739 (2009)
Shalizi, C.R., Kontorovich, A.: Predictive PAC learning and process decompositions. In: Neural Information Processing Systems (NIPS) (2013)
Shawe-Taylor, J., Bartlett, P.L., Williamson, R.C., Anthony, M.: Structural risk minimization over data-dependent hierarchies. IEEE Trans. Inf. Theory 44(5), 1926–1940 (1998)
Steinwart, I., Christmann, A.: Fast learning from non-i.i.d. observations. In: NIPS, pp. 1768–1776 (2009)
Steinwart, I., Hush, D., Scovel, C.: Learning from dependent observations. J. Multivar. Anal. 100(1), 175–194 (2009)
Teichmann, J.: Foundations of martingale theory and stochastic calculus from a finance perspective (2015)
Toth, B.: No more than three favorite sites for simple random walk. Ann. Probab. 29(1), 484–503 (2001)
Tsybakov, A.B.: Introduction à l’estimation non-paramétrique, volume 41 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer, Berlin (2004). ISBN 3-540-40592-5
Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)
Zimin, A., Lampert, C.H.: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, AISTATS 2017, 20-22 April 2017, Fort Lauderdale, FL, USA, volume 54 of Proceedings of Machine Learning Research, pp. 213–222, PMLR Singh, A., Zhu, X.J. (eds.) (2017)
Zou, B., Xu, Z.-B., Xu, J.: Generalization bounds of ERM algorithm with Markov chain samples. Acta Mathematicae Applicatae Sinica (English Series), pp. 1–16 (2014)