Experimental study of microstructure changes due to low cycle fatigue of a steel nanocrystallised by Surface Mechanical Attrition Treatment (SMAT)

Materials Characterization - Tập 124 - Trang 117-121 - 2017
Z. Sun1, D. Retraint1, T. Baudin2, A.L. Helbert2, F. Brisset2, M. Chemkhi1, J. Zhou1, P. Kanouté1,3
1ICD, P2MN, LASMIS, University of Technology of Troyes, UMR 6281, CNRS, Troyes, France
2ICMMO, Univ Paris-Sud, Université Paris-Saclay, UMR CNRS 8182, 91405 Orsay Cedex, France
3ONERA, The French Aerospace Lab, 29 avenue de la Division Leclerc, 92322 Chatillon Cedex, France

Tài liệu tham khảo

Lu, 1999, Surface nanocrystallization (SNC) of metallic materials – presentation of the concept behind a new approach, J. Mater. Sci. Technol., 15, 193 Lu, 2004, Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment, Mater. Sci. Eng. A, 375–377, 38, 10.1016/j.msea.2003.10.261 Roland, 2007, Enhanced mechanical behavior of a nanocrystallised stainless steel and its thermal stability, Mater. Sci. Eng. A, 445–446, 281, 10.1016/j.msea.2006.09.041 Uusitalo, 2009, Fatigue properties of steels with ultrasonic attrition treated surface layers, Mater. Sci. Forum, 604–605, 239, 10.4028/www.scientific.net/MSF.604-605.239 Roland, 2006, Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment, Scr. Mater., 54, 1949, 10.1016/j.scriptamat.2006.01.049 Tian, 2007, A study of the effect of nanostructured surface layers on the fatigue behaviors of a C-2000 superalloy, Mater. Sci. Eng. A, 468–470, 164, 10.1016/j.msea.2006.10.150 Dai, 2008, Analysis of fatigue resistance improvements via surface severe plastic deformation, Int. J. Fatigue, 30, 1398, 10.1016/j.ijfatigue.2007.10.010 Shaw, 2010, A direct comparison in the fatigue resistance enhanced by surface severe plastic deformation and shot peening in a C-2000 superalloy, Mater. Sci. Eng. A, 527, 986, 10.1016/j.msea.2009.10.028 Kumar, 2012, Effect of surface mechanical attrition treatment on fatigue lives of alloy 718, Trans. Indian Inst. Metals, 65, 473, 10.1007/s12666-012-0154-5 Micoulaut, 2007, Granular gases in mechanical engineering on the origin of heterogeneous ultrasonic shot peening, Granul. Matter, 9, 25, 10.1007/s10035-006-0018-y Ruan, 2010, Characterization of plastically graded nanostructured material: part II. The experimental validation in surface nanostructured material, Mech. Mater., 42, 698, 10.1016/j.mechmat.2010.04.007 Blonde, 2010, Evolution of texture and microstructure in pulsed electrodeposited Cu treated by surface mechanical attrition treatment, J. Alloys Compd., 504, S410, 10.1016/j.jallcom.2010.04.040 Zhang, 2011, A computational study of plastic deformation in AISI 304 induced by surface mechanical attrition treatment, Mech. Adv. Mater. Struct., 18, 572, 10.1080/15376494.2011.621828 Liu, 2000, Surface nanocrystallization of 316L stainless steel induced by ultrasonic shot peening, Mater. Sci. Eng. A, 286, 91, 10.1016/S0921-5093(00)00686-9 Samih, 2013, In-depth quantitative analysis of the microstructures produced by surface mechanical attrition treatment (SMAT), Mater. Charact., 83, 129, 10.1016/j.matchar.2013.06.006 Oddershede, 2015, Deformation-induced orientation spread in individual bulk grains of an interstitial-free steel, Acta Mater., 85, 301, 10.1016/j.actamat.2014.11.038 Wei, 2004, Grain-boundary sliding and separation in polycrystalline metals: application to nanocrystalline fcc metals, J. Mech. Phys. Solids, 52, 2587, 10.1016/j.jmps.2004.04.006 Wei, 2008, Enhanced strain-rate sensitivity in fcc nanocrystals due to grain-boundary diffusion and sliding, Acta Mater., 56, 1741, 10.1016/j.actamat.2007.12.028 Meyers, 2006, Mechanical properties of nanocrystalline materials, Prog. Mater. Sci., 51, 427, 10.1016/j.pmatsci.2005.08.003