Asymmetric polysaccharide-bound graphene electrode configuration with enhanced electrosorption performance for uranium (VI) ions

Chemical Engineering Journal - Tập 424 - Trang 130351 - 2021
Yun Liao1,2, Chuan Yan3, Ke Zeng1,2, Chenglin Liao3, Meng Wang3
1School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan, 421001, PR China
2Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, Hengyang, Hunan, 421001, PR China
3School of Nuclear Science and Technology, University of South China, Hengyang, Hunan 421001, PR China

Tài liệu tham khảo

World Energy Outlook 2020. https://www.iea.org/reports/world-energy-outlook-2020. Li, 2019, An overview and recent progress in the heterogeneous photocatalytic reduction of U(VI), J. Photoch. Photobio. C, 41, 100320, 10.1016/j.jphotochemrev.2019.100320 Singhal, 2020, Efficient extraction of uranium from environmental samples using phosphoramide functionalized magnetic nanoparticles: understanding adsorption and binding mechanisms, J. Hazard. Mater., 384, 121353, 10.1016/j.jhazmat.2019.121353 Ma, 2019, Sunlight polymerization of poly(amidoxime) hydrogel membrane for enhanced uranium extraction from seawater, Adv. Sci., 6, 1900085, 10.1002/advs.201900085 Xie, 2020, Low concentration of Fe(II) to enhance the precipitation of U(VI) under neutral oxygen-rich conditions, Sci. Total Environ., 711, 134827, 10.1016/j.scitotenv.2019.134827 Ang, 2017, The effectiveness of ion exchange resins in separating uranium and thorium from rare earth elements in acidic aqueous sulfate media. Part 1. Anionic and cationic resins, Hydrometallurgy, 174, 147, 10.1016/j.hydromet.2017.10.011 Chandrasekar, 2019, Highly selective separations of U(VI) from a Th(IV) matrix by branched butyl phosphates: insights from solvent extraction, chromatography and quantum chemical calculations, Sep. Purif. Technol., 210, 182, 10.1016/j.seppur.2018.08.005 Wang, 2019, Membrane-free hybrid capacitive deionization system based on redox reaction for high-efficiency NaCl removal, Environ. Sci. Technol., 53, 6292, 10.1021/acs.est.9b00662 Kim, 2019, Reuse of municipal wastewater via membrane capacitive deionization using ion-selective polymer-coated carbon electrodes in pilot-scale, Chem. Eng. J., 372, 241, 10.1016/j.cej.2019.04.156 Yang, 2019, Decreased charge transport distance by titanium mesh-membrane assembly for flow-electrode capacitive deionization with high desalination performance, Water Res., 164, 114904, 10.1016/j.watres.2019.114904 Gao, 2020, Heteroatom doping modified hierarchical mesoporous carbon derived from ZIF-8 for capacitive deionization with enhanced salt removal rate, Sep. Purif. Technol., 231, 115918, 10.1016/j.seppur.2019.115918 Vengatesan, 2019, Ag-doped sepiolite intercalated graphene nanostructure for hybrid capacitive deionization system, Sep. Purif. Technol., 229, 115799, 10.1016/j.seppur.2019.115799 Ismail, 2015, Investigation of activated carbon adsorbent electrode for electrosorption-based uranium extraction from seawater, Nucl. Eng. Technol., 47, 579, 10.1016/j.net.2015.02.002 Liao, 2019, Electrosorption of uranium(VI) by highly porous phosphate-functionalized graphene hydrogel, Appl. Surf. Sci., 484, 83, 10.1016/j.apsusc.2019.04.103 Zhou, 2020, Pseudocapacitive deionization of uranium(VI) with WO3/C electrode, Chem. Eng. J., 398, 125460, 10.1016/j.cej.2020.125460 Zhang, 2020, Aryl diazonium-assisted amidoximation of mXene for boosting water stability and uranyl sequestration via electrochemical sorption, ACS Appl. Mater. Interfaces, 12, 15579, 10.1021/acsami.0c00861 Giannakoudakis, 2021, Enhanced uranium removal from acidic wastewater by phosphonate-functionalized ordered mesoporous silica: surface chemistry matters the most, J. Hazard. Mater., 413, 125279, 10.1016/j.jhazmat.2021.125279 Yu, 2021, Efficient removal of uranium (VI) by nano-manganese oxide materials: a synthetic experimental and mechanism studies, J. Alloys Compd., 868, 159069, 10.1016/j.jallcom.2021.159069 Carboni, 2013, Highly porous and stable metal–organic frameworks for uranium extraction, Chemi. Sci., 4, 2396, 10.1039/c3sc50230a Zhang, 2020, Effective removal of U(VI) and Eu(III) by carboxyl functionalized MXene nanosheets, J. Hazard. Mater., 396, 122731, 10.1016/j.jhazmat.2020.122731 Jung, 2011, Electrosorption of uranium ions on activated carbon fibers, J. Radioanal. Nucl. Chem., 287, 833, 10.1007/s10967-010-0848-2 Liu, 2017, A half-wave rectified alternating current electrochemical method for uranium extraction from seawater, Nat. Energy, 2, 17007, 10.1038/nenergy.2017.7 Wu, 2019, Three-dimensional graphene materials for UO22+ electrosorption, J. Radioanal. Nucl. Chem., 321, 977, 10.1007/s10967-019-06650-2 Wang, 2016, Functional three-dimensional graphene/polymer composites, ACS Nano, 10, 7231, 10.1021/acsnano.6b03349 Li, 2019, Highly efficient and stable desalination via novel hybrid capacitive deionization with redox-active polyimide cathode, Desalination, 469, 114098, 10.1016/j.desal.2019.114098 Palakkal, 2018, Low-resistant ion-exchange membranes for energy efficient membrane capacitive deionization, ACS Sustain. Chem. Eng., 6, 13778, 10.1021/acssuschemeng.8b01797 Fritz, 2019, Polyelectrolyte-activated carbon composite electrodes for inverted membrane capacitive deionization (iMCDI), Sep. Purif. Technol., 220, 145, 10.1016/j.seppur.2019.03.053 Haq, 2018, Anion-exchange membrane for membrane capacitive deionization prepared via pore-filling polymerization in a porous polyethylene supporting membrane, React. Funct. Polym., 132, 36, 10.1016/j.reactfunctpolym.2018.09.010 Liu, 2017, Separation and recovery of heavy metal ions and salt ions from wastewater by 3D graphene-based asymmetric electrodes via capacitive deionization, J. Mater. Chem. A, 5, 14748, 10.1039/C7TA03515B Shen, 2021, Exploring the electrosorption selectivity and recovery of indium ions with capacitive deionization in acidic solution, J. Colloid Interf. Sci., 586, 819, 10.1016/j.jcis.2020.11.006 Zornitta, 2018, Simultaneous analysis of electrosorption capacity and kinetics for CDI desalination using different electrode configurations, Chem. Eng. J., 332, 33, 10.1016/j.cej.2017.09.067 Kwon, 2018, The emerging era of supramolecular polymeric binders in silicon anodes, Chem. Soc. Rev., 47, 2145, 10.1039/C7CS00858A Qi, 2019, l-cysteine-modified acacia gum as a multifunctional binder for lithium–sulfur batteries, ACS Appl. Mater. Inter., 11, 47956, 10.1021/acsami.9b17458 Li, 2013, Importance of binder compositions to the dispersion and electrochemical properties of water-based LiCoO2 cathodes, J. Power Sources, 227, 204, 10.1016/j.jpowsour.2012.11.025 Hu, 2019, Poly(4-vinylbenzoic acid): a re-Engineered binder for improved performance from water-Free slurry processing for silicon graphite composite electrodes, ACS Appl. Energ. Mater., 2, 6348, 10.1021/acsaem.9b00987 Fu, 2019, A robust and ion-conductive protein-based binder enabling strong polysulfide anchoring for high-energy lithium–sulfur batteries, J. Mater. Chem. A, 7, 1835, 10.1039/C8TA11384J Prasanna, 2015, Environment-friendly cathodes using biopolymer chitosan with enhanced electrochemical behavior for use in lithium ion batteries, ACS Appl. Mater. Interfaces, 7, 7884, 10.1021/am5084094 Jeong, 2015, Millipede-inspired structural design principle for high performance polysaccharide binders in silicon anodes, Energ. Environ. Sci., 8, 1224, 10.1039/C5EE00239G Zhao, 2010, Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites, Macromolecules, 43, 2357, 10.1021/ma902862u Kong, 2016, Holey graphene hydrogel with in-plane pores for high-performance capacitive desalination, Nano Res., 9, 2458, 10.1007/s12274-016-1132-8 Huang, 2017, Carbon electrodes for capacitive deionization, J. Mater. Chem. A, 5, 470, 10.1039/C6TA06733F Li, 2014, A facile approach to superhydrophobic and superoleophilic graphene/polymer aerogels, J. Mater. Chem. A, 2, 3057, 10.1039/c3ta14262k Liao, 2018, Preparation of polydopamine-modified graphene oxide/chitosan aerogel for uranium(VI) adsorption, Ind. Eng. Chem. Res., 57, 8472, 10.1021/acs.iecr.8b01745 Radich, 2013, Making graphene holey. Gold-nanoparticle- mediated hydroxyl radical attack on reduced graphene oxide, ACS Nano, 7, 5546, 10.1021/nn401794k Xu, 2015, Solution processable holey graphene oxide and Its derived macrostructures for high-performance supercapacitors, Nano Lett., 15, 4605, 10.1021/acs.nanolett.5b01212 Chai, 2013, Chitosan, a new and environmental benign electrode binder for use with graphite anode in lithium-ion batteries, Electrochim. Acta, 105, 378, 10.1016/j.electacta.2013.05.009 Hu, 2011, Microwave-assisted covalent modification of graphene nanosheets with chitosan and its electrorheological characteristics, Appl. Surf. Sci., 257, 2637, 10.1016/j.apsusc.2010.10.035 Song, 2014, Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries, Adv. Funct. Mater., 24, 5904, 10.1002/adfm.201401269 Wang, 2020, A universal cross-linking binding polymer composite for ultrahigh-loading Li-ion battery electrodes, J. Mater. Chem. A, 8, 9693, 10.1039/D0TA00714E Chen, 2018, Enhancement in electroactive crystalline phase and dielectric performance of novel PEG-graphene/PVDF composites, Appl. Surf. Sci., 448, 320, 10.1016/j.apsusc.2018.04.144 Liu, 2019, Nitrogen-doped hierarchical porous carbon aerogel for high-performance capacitive deionization, Sep. Purif. Technol., 224, 44, 10.1016/j.seppur.2019.05.010 Kim, 2019, Enhancing capacitive deionization performance with charged structural polysaccharide electrode binders, Water Res., 148, 388, 10.1016/j.watres.2018.10.044 Baroud, 2018, High salt capacity and high removal rate capacitive deionization enabled by hierarchical porous carbons, Carbon, 139, 614, 10.1016/j.carbon.2018.05.053 Jain, 2018, Aqueous-processed, high-capacity electrodes for membrane capacitive deionization, Environ. Sci. Technol., 52, 5859, 10.1021/acs.est.7b05874 Luo, 2019, Engineering robust metal–phenolic network membranes for uranium extraction from seawater, Energ. Environ. Sci., 12, 607, 10.1039/C8EE01438H Dai, 2017, Combined electrosorption and chemisorption of As(V) in water by using Fe-rGO@AC electrode, ACS Sustain. Chem. Eng., 5, 6532, 10.1021/acssuschemeng.7b00633 Zhu, 2018, Bioassembly of fungal hyphae/carbon nanotubes composite as a versatile adsorbent for water pollution control, Chem. Eng. J., 339, 214, 10.1016/j.cej.2018.01.134 Zhou, 2021, rGO/CNQDs/ZIF-67 composite aerogel for efficient extraction of uranium in wastewater, Chem. Eng. J., 419, 129622, 10.1016/j.cej.2021.129622 Li, 2021, Anchoring nanoscale iron sulfide onto graphene oxide for the highly efficient immobilization of uranium (VI) from aqueous solutions, J. Mol. Liq., 332, 115910, 10.1016/j.molliq.2021.115910 Su, 2021, Graphene oxide functionalized with nano hydroxyapatite for the efficient removal of U(VI) from aqueous solution, Environ. Pollut., 268, 115786, 10.1016/j.envpol.2020.115786 Song, 2019, Self-assembly of graphene oxide/PEDOT:PSS nanocomposite as a novel adsorbent for uranium immobilization from wastewater, Environ. Pollut., 250, 196, 10.1016/j.envpol.2019.04.020 Amini, 2021, A porous multifunctional and magnetic layered graphene oxide/3D mesoporous MOF nanocomposite for rapid adsorption of uranium(VI) from aqueous solutions, J. Ind. Eng. Chem., 93, 322, 10.1016/j.jiec.2020.10.008 Wang, 2021, Rational structure design for enhanced uranium(VI) capture and beyond: From carbon nanotubes to graphene oxide nanoribbons, J. Mol. Liq., 323, 114639, 10.1016/j.molliq.2020.114639 Cheng, 2017, Fabrication of 3D macroscopic graphene oxide composites supported by montmorillonite for efficient U(VI) wastewater purification, ACS Sustain. Chem. Eng., 5, 5503, 10.1021/acssuschemeng.7b00841 Zuo, 2018, Novel composite electrodes for selective removal of sulfate by the capacitive deionization process, Environ. Sci. Technol., 52, 9486, 10.1021/acs.est.8b01868 Huang, 2017, Interaction mechanism of uranium(VI) with three-dimensional graphene oxide-chitosan composite: insights from batch experiments, IR, XPS, and EXAFS spectroscopy, Chem. Eng. J., 328, 1066, 10.1016/j.cej.2017.07.067