Asymmetric polysaccharide-bound graphene electrode configuration with enhanced electrosorption performance for uranium (VI) ions
Tài liệu tham khảo
World Energy Outlook 2020. https://www.iea.org/reports/world-energy-outlook-2020.
Li, 2019, An overview and recent progress in the heterogeneous photocatalytic reduction of U(VI), J. Photoch. Photobio. C, 41, 100320, 10.1016/j.jphotochemrev.2019.100320
Singhal, 2020, Efficient extraction of uranium from environmental samples using phosphoramide functionalized magnetic nanoparticles: understanding adsorption and binding mechanisms, J. Hazard. Mater., 384, 121353, 10.1016/j.jhazmat.2019.121353
Ma, 2019, Sunlight polymerization of poly(amidoxime) hydrogel membrane for enhanced uranium extraction from seawater, Adv. Sci., 6, 1900085, 10.1002/advs.201900085
Xie, 2020, Low concentration of Fe(II) to enhance the precipitation of U(VI) under neutral oxygen-rich conditions, Sci. Total Environ., 711, 134827, 10.1016/j.scitotenv.2019.134827
Ang, 2017, The effectiveness of ion exchange resins in separating uranium and thorium from rare earth elements in acidic aqueous sulfate media. Part 1. Anionic and cationic resins, Hydrometallurgy, 174, 147, 10.1016/j.hydromet.2017.10.011
Chandrasekar, 2019, Highly selective separations of U(VI) from a Th(IV) matrix by branched butyl phosphates: insights from solvent extraction, chromatography and quantum chemical calculations, Sep. Purif. Technol., 210, 182, 10.1016/j.seppur.2018.08.005
Wang, 2019, Membrane-free hybrid capacitive deionization system based on redox reaction for high-efficiency NaCl removal, Environ. Sci. Technol., 53, 6292, 10.1021/acs.est.9b00662
Kim, 2019, Reuse of municipal wastewater via membrane capacitive deionization using ion-selective polymer-coated carbon electrodes in pilot-scale, Chem. Eng. J., 372, 241, 10.1016/j.cej.2019.04.156
Yang, 2019, Decreased charge transport distance by titanium mesh-membrane assembly for flow-electrode capacitive deionization with high desalination performance, Water Res., 164, 114904, 10.1016/j.watres.2019.114904
Gao, 2020, Heteroatom doping modified hierarchical mesoporous carbon derived from ZIF-8 for capacitive deionization with enhanced salt removal rate, Sep. Purif. Technol., 231, 115918, 10.1016/j.seppur.2019.115918
Vengatesan, 2019, Ag-doped sepiolite intercalated graphene nanostructure for hybrid capacitive deionization system, Sep. Purif. Technol., 229, 115799, 10.1016/j.seppur.2019.115799
Ismail, 2015, Investigation of activated carbon adsorbent electrode for electrosorption-based uranium extraction from seawater, Nucl. Eng. Technol., 47, 579, 10.1016/j.net.2015.02.002
Liao, 2019, Electrosorption of uranium(VI) by highly porous phosphate-functionalized graphene hydrogel, Appl. Surf. Sci., 484, 83, 10.1016/j.apsusc.2019.04.103
Zhou, 2020, Pseudocapacitive deionization of uranium(VI) with WO3/C electrode, Chem. Eng. J., 398, 125460, 10.1016/j.cej.2020.125460
Zhang, 2020, Aryl diazonium-assisted amidoximation of mXene for boosting water stability and uranyl sequestration via electrochemical sorption, ACS Appl. Mater. Interfaces, 12, 15579, 10.1021/acsami.0c00861
Giannakoudakis, 2021, Enhanced uranium removal from acidic wastewater by phosphonate-functionalized ordered mesoporous silica: surface chemistry matters the most, J. Hazard. Mater., 413, 125279, 10.1016/j.jhazmat.2021.125279
Yu, 2021, Efficient removal of uranium (VI) by nano-manganese oxide materials: a synthetic experimental and mechanism studies, J. Alloys Compd., 868, 159069, 10.1016/j.jallcom.2021.159069
Carboni, 2013, Highly porous and stable metal–organic frameworks for uranium extraction, Chemi. Sci., 4, 2396, 10.1039/c3sc50230a
Zhang, 2020, Effective removal of U(VI) and Eu(III) by carboxyl functionalized MXene nanosheets, J. Hazard. Mater., 396, 122731, 10.1016/j.jhazmat.2020.122731
Jung, 2011, Electrosorption of uranium ions on activated carbon fibers, J. Radioanal. Nucl. Chem., 287, 833, 10.1007/s10967-010-0848-2
Liu, 2017, A half-wave rectified alternating current electrochemical method for uranium extraction from seawater, Nat. Energy, 2, 17007, 10.1038/nenergy.2017.7
Wu, 2019, Three-dimensional graphene materials for UO22+ electrosorption, J. Radioanal. Nucl. Chem., 321, 977, 10.1007/s10967-019-06650-2
Wang, 2016, Functional three-dimensional graphene/polymer composites, ACS Nano, 10, 7231, 10.1021/acsnano.6b03349
Li, 2019, Highly efficient and stable desalination via novel hybrid capacitive deionization with redox-active polyimide cathode, Desalination, 469, 114098, 10.1016/j.desal.2019.114098
Palakkal, 2018, Low-resistant ion-exchange membranes for energy efficient membrane capacitive deionization, ACS Sustain. Chem. Eng., 6, 13778, 10.1021/acssuschemeng.8b01797
Fritz, 2019, Polyelectrolyte-activated carbon composite electrodes for inverted membrane capacitive deionization (iMCDI), Sep. Purif. Technol., 220, 145, 10.1016/j.seppur.2019.03.053
Haq, 2018, Anion-exchange membrane for membrane capacitive deionization prepared via pore-filling polymerization in a porous polyethylene supporting membrane, React. Funct. Polym., 132, 36, 10.1016/j.reactfunctpolym.2018.09.010
Liu, 2017, Separation and recovery of heavy metal ions and salt ions from wastewater by 3D graphene-based asymmetric electrodes via capacitive deionization, J. Mater. Chem. A, 5, 14748, 10.1039/C7TA03515B
Shen, 2021, Exploring the electrosorption selectivity and recovery of indium ions with capacitive deionization in acidic solution, J. Colloid Interf. Sci., 586, 819, 10.1016/j.jcis.2020.11.006
Zornitta, 2018, Simultaneous analysis of electrosorption capacity and kinetics for CDI desalination using different electrode configurations, Chem. Eng. J., 332, 33, 10.1016/j.cej.2017.09.067
Kwon, 2018, The emerging era of supramolecular polymeric binders in silicon anodes, Chem. Soc. Rev., 47, 2145, 10.1039/C7CS00858A
Qi, 2019, l-cysteine-modified acacia gum as a multifunctional binder for lithium–sulfur batteries, ACS Appl. Mater. Inter., 11, 47956, 10.1021/acsami.9b17458
Li, 2013, Importance of binder compositions to the dispersion and electrochemical properties of water-based LiCoO2 cathodes, J. Power Sources, 227, 204, 10.1016/j.jpowsour.2012.11.025
Hu, 2019, Poly(4-vinylbenzoic acid): a re-Engineered binder for improved performance from water-Free slurry processing for silicon graphite composite electrodes, ACS Appl. Energ. Mater., 2, 6348, 10.1021/acsaem.9b00987
Fu, 2019, A robust and ion-conductive protein-based binder enabling strong polysulfide anchoring for high-energy lithium–sulfur batteries, J. Mater. Chem. A, 7, 1835, 10.1039/C8TA11384J
Prasanna, 2015, Environment-friendly cathodes using biopolymer chitosan with enhanced electrochemical behavior for use in lithium ion batteries, ACS Appl. Mater. Interfaces, 7, 7884, 10.1021/am5084094
Jeong, 2015, Millipede-inspired structural design principle for high performance polysaccharide binders in silicon anodes, Energ. Environ. Sci., 8, 1224, 10.1039/C5EE00239G
Zhao, 2010, Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites, Macromolecules, 43, 2357, 10.1021/ma902862u
Kong, 2016, Holey graphene hydrogel with in-plane pores for high-performance capacitive desalination, Nano Res., 9, 2458, 10.1007/s12274-016-1132-8
Huang, 2017, Carbon electrodes for capacitive deionization, J. Mater. Chem. A, 5, 470, 10.1039/C6TA06733F
Li, 2014, A facile approach to superhydrophobic and superoleophilic graphene/polymer aerogels, J. Mater. Chem. A, 2, 3057, 10.1039/c3ta14262k
Liao, 2018, Preparation of polydopamine-modified graphene oxide/chitosan aerogel for uranium(VI) adsorption, Ind. Eng. Chem. Res., 57, 8472, 10.1021/acs.iecr.8b01745
Radich, 2013, Making graphene holey. Gold-nanoparticle- mediated hydroxyl radical attack on reduced graphene oxide, ACS Nano, 7, 5546, 10.1021/nn401794k
Xu, 2015, Solution processable holey graphene oxide and Its derived macrostructures for high-performance supercapacitors, Nano Lett., 15, 4605, 10.1021/acs.nanolett.5b01212
Chai, 2013, Chitosan, a new and environmental benign electrode binder for use with graphite anode in lithium-ion batteries, Electrochim. Acta, 105, 378, 10.1016/j.electacta.2013.05.009
Hu, 2011, Microwave-assisted covalent modification of graphene nanosheets with chitosan and its electrorheological characteristics, Appl. Surf. Sci., 257, 2637, 10.1016/j.apsusc.2010.10.035
Song, 2014, Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries, Adv. Funct. Mater., 24, 5904, 10.1002/adfm.201401269
Wang, 2020, A universal cross-linking binding polymer composite for ultrahigh-loading Li-ion battery electrodes, J. Mater. Chem. A, 8, 9693, 10.1039/D0TA00714E
Chen, 2018, Enhancement in electroactive crystalline phase and dielectric performance of novel PEG-graphene/PVDF composites, Appl. Surf. Sci., 448, 320, 10.1016/j.apsusc.2018.04.144
Liu, 2019, Nitrogen-doped hierarchical porous carbon aerogel for high-performance capacitive deionization, Sep. Purif. Technol., 224, 44, 10.1016/j.seppur.2019.05.010
Kim, 2019, Enhancing capacitive deionization performance with charged structural polysaccharide electrode binders, Water Res., 148, 388, 10.1016/j.watres.2018.10.044
Baroud, 2018, High salt capacity and high removal rate capacitive deionization enabled by hierarchical porous carbons, Carbon, 139, 614, 10.1016/j.carbon.2018.05.053
Jain, 2018, Aqueous-processed, high-capacity electrodes for membrane capacitive deionization, Environ. Sci. Technol., 52, 5859, 10.1021/acs.est.7b05874
Luo, 2019, Engineering robust metal–phenolic network membranes for uranium extraction from seawater, Energ. Environ. Sci., 12, 607, 10.1039/C8EE01438H
Dai, 2017, Combined electrosorption and chemisorption of As(V) in water by using Fe-rGO@AC electrode, ACS Sustain. Chem. Eng., 5, 6532, 10.1021/acssuschemeng.7b00633
Zhu, 2018, Bioassembly of fungal hyphae/carbon nanotubes composite as a versatile adsorbent for water pollution control, Chem. Eng. J., 339, 214, 10.1016/j.cej.2018.01.134
Zhou, 2021, rGO/CNQDs/ZIF-67 composite aerogel for efficient extraction of uranium in wastewater, Chem. Eng. J., 419, 129622, 10.1016/j.cej.2021.129622
Li, 2021, Anchoring nanoscale iron sulfide onto graphene oxide for the highly efficient immobilization of uranium (VI) from aqueous solutions, J. Mol. Liq., 332, 115910, 10.1016/j.molliq.2021.115910
Su, 2021, Graphene oxide functionalized with nano hydroxyapatite for the efficient removal of U(VI) from aqueous solution, Environ. Pollut., 268, 115786, 10.1016/j.envpol.2020.115786
Song, 2019, Self-assembly of graphene oxide/PEDOT:PSS nanocomposite as a novel adsorbent for uranium immobilization from wastewater, Environ. Pollut., 250, 196, 10.1016/j.envpol.2019.04.020
Amini, 2021, A porous multifunctional and magnetic layered graphene oxide/3D mesoporous MOF nanocomposite for rapid adsorption of uranium(VI) from aqueous solutions, J. Ind. Eng. Chem., 93, 322, 10.1016/j.jiec.2020.10.008
Wang, 2021, Rational structure design for enhanced uranium(VI) capture and beyond: From carbon nanotubes to graphene oxide nanoribbons, J. Mol. Liq., 323, 114639, 10.1016/j.molliq.2020.114639
Cheng, 2017, Fabrication of 3D macroscopic graphene oxide composites supported by montmorillonite for efficient U(VI) wastewater purification, ACS Sustain. Chem. Eng., 5, 5503, 10.1021/acssuschemeng.7b00841
Zuo, 2018, Novel composite electrodes for selective removal of sulfate by the capacitive deionization process, Environ. Sci. Technol., 52, 9486, 10.1021/acs.est.8b01868
Huang, 2017, Interaction mechanism of uranium(VI) with three-dimensional graphene oxide-chitosan composite: insights from batch experiments, IR, XPS, and EXAFS spectroscopy, Chem. Eng. J., 328, 1066, 10.1016/j.cej.2017.07.067