A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1α regulates the VEGF expression and is potentially involved in lung and vascular development

Masatsugu Ema1, Shin-ichiro Taya1, Noboru Yokotani1,2, Kazuhiro Sogawa1, Youichi Matsuda1, Yoshiaki Fujii‐Kuriyama1
1Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980–77, Japan; Toneyama Institute for Tuberculosis Research, Osaka City University Medical School, Osaka 545, Japan; and Genome Research Group, National Institute of Radiological Sciences, Inage, Chiba 263, Japan
2OSAKA-CITY UNIVERSITY

Tóm tắt

We have isolated and characterized a cDNA for a novel Per-Arnt/AhR-Sim basic helix–loop–helix (bHLH-PAS) factor that interacts with the Ah receptor nuclear translocator (Arnt), and its predicted amino acid sequence exhibits significant similarity to the hypoxia-inducible factor 1α (HIF1α) and Drosophila trachealess ( dTrh ) gene product. The HIF1α-like factor (HLF) encoded by the isolated cDNA bound the hypoxia-response element (HRE) found in enhancers of genes for erythropoietin, vascular endothelial growth factor (VEGF), and various glycolytic enzymes, and activated transcription of a reporter gene harboring the HRE. Although transcription-activating properties of HLF were very similar to those reported for HIF1α, their expression patterns were quite different between the two factors; HLF mRNA was most abundantly expressed in lung, followed by heart, liver, and other various organs under normoxic conditions, whereas HIF1α mRNA was ubiquitously expressed at much lower levels. In lung development around parturition, HLF mRNA expression was markedly enhanced, whereas that of HIF1α mRNA remained apparently unchanged at a much lower level. Moreover, HLF mRNA expression was closely correlated with that of VEGF mRNA. Whole mount in situ hybridization experiments demonstrated that HLF mRNA was expressed in vascular endothelial cells at the middle stages (9.5 and 10.5 days postcoitus) of mouse embryo development, where HIF1α mRNA was almost undetectable. The high expression level of HLF mRNA in the O 2 delivery system of developing embryos and adult organs suggests that in a normoxic state, HLF regulates gene expression of VEGF, various glycolytic enzymes, and others driven by the HRE sequence, and may be involved in development of blood vessels and the tubular system of lung.

Từ khóa


Tài liệu tham khảo

N Ferrara, K Houck, L Jakeman, D Leung Endocr Rev 13, 18–32 (1992).

H F Dvorak, L F Brown, M Detmar, A M Dvorak Am J Pathol 146, 1029–1039 (1995).

B Berse, L F Brown, Van De Water, H F Dvorak, D R Senger Mol Biol Cell 3, 211–220 (1992).

S Banai, A Shweiki, A Pinson, M Chandra, G Lazarovici, E Keshet Cardiovasc Res 28, 1176–1179 (1994).

K H Plate, G Breier, A Weich, W Risau Nature (London) 359, 845–848 (1992).

D Shweiki, A Itin, D Soffer, E Keshet Nature (London) 359, 843–845 (1992).

A P Levy, N S Levy, S Wegner, M A Goldberg J Biol Chem 270, 1333–13340 (1995).

J A Forsythe, B-H Jiang, N V Iyer, F Agani, S W Leung, R D Koos, G L Semenza Mol Cell Biol 16, 4604–4613 (1996).

Y Liu, S R Cox, T Morita, S Kourembanas Circ Res 77, 638–643 (1996).

G L Semenza, G L Wang Mol Cell Biol 12, 5447–5454 (1992).

M L Norris, D E Millhorn J Biol Chem 270, 23774–23779 (1996).

G Melillo, T Musso, A Sica, L S Taylor, G W Cox, L Varesio J Exp Med 182, 1683–1693 (1995).

J D Firth, B L Ebert, C W Pugh, P J Ratcliffe Proc Natl Acad Sci USA 91, 6496–6500 (1994).

G L Semenza, P H Roth, H M Fang, G L Wang J Biol Chem 269, 23757–23763 (1995).

G L Wang, B-H Jiang, E A Rue, G L Semenza Proc Natl Acad Sci USA 92, 5510–5514 (1995).

O Hankinson Annu Rev Pharmacol Toxicol 35, 307–340 (1995).

J R Nambu, J O Lewis, K O Wharton, S T Crews Cell 67, 1157–1167 (1991).

D D Isaac, D J Andrew Genes Dev 10, 103–118 (1996).

R Wilk, I Weizman, B-Z Shilo Genes Dev 10, 93–102 (1996).

K Hirose, M Morita, M Ema, J Mimura, H Hamada, H Fujii, Y Saijoh, O Gotoh, K Sogawa, Y Fujii-Kuriyama Mol Cell Biol 16, 1706–1713 (1996).

M Ema, M Suzuki, M Morita, K Hirose, K Sogawa, Y Matsuda, O Gotoh, Y Saijoh, H Fujii, H Hamada, Y Fujii-Kuriyama Biochem Biophys Res Commun 218, 588–594 (1996).

Y Matsuda, Y-H Harada, S Natsume-Sakai, K Lee, T Shiomi, V M Chapman Cytogenet Cell Genet 61, 282–285 (1992).

S Mizushima, S Nagata Nucleic Acids Res 18, 5322 (1990).

M Ema, M Morita, S Ikawa, M Tanaka, Y Matsuda, O Gotoh, Y Saijoh, H Fujii, H Hamada, Y Kikuchi, Y Fujii-Kuriyama Mol Cell Biol 16, 5865–5875 (1996).

D T Shima, M Kuroki, U Deutsch, Y-S Ng, A P Adamis, P A D’Amore J Biol Chem 271, 3877–3883 (1996).

K Gradin, J McGuire, R H Wenger, I Kvietikova, M L Whitelaw, R Toftgard, L Tora, M Gassmann, L Poellinger Mol Cell Biol 16, 5221–5231 (1996).

E C Hoffman, H Reyes, F-F Chu, F Sander, L H Conley, B H Brooks, O Hankinson Science 252, 954–958 (1991).

K Sogawa, R Nakano, A Kobayashi, Y Kikuchi, N Ohe, N Matsushita, Y Fujii-Kuriyama Proc Natl Acad Sci USA 92, 1936–1940 (1995).

J M Chirgwin, A E Przybyla, R J MacDonald, W J Rutter Biochemistry 18, 5294–5299 (1979).

R H Wenger, A Rolfs, H H Marti, J L Guenet, M Gassmann Biochem Biophys Res Commun 223, 54–59 (1996).

D G Wilkinson In Situ Hybridization: A Practical Approach (Oxford Univ. Press, London, 1992).

M Kozak J Cell Biol 108, 229–241 (1989).

S Kourembanas, P A Marsden, L P McQuillan, D V Faller J Clin Invest 88, 1054–1057 (1991).

M Ema, K Sogawa, N Watanabe, Y Chujoh, N Matsushita, O Gotoh, Y Funae, Y Fujii-Kuriyama Biochem Biophys Res Commun 184, 246–253 (1992).

K Burbach, M A Poland, C A Bradfield Proc Natl Acad Sci USA 89, 8185–8189 (1992).

G L Semenza, E A Rue, N V Iyer, M G Pang, W G Kearns Genomics 34, 437–439 (1996).

G Breier, M Clauss, W Risau Dev Dyn 204, 228–239 (1995).

B Millauer, S Wizigmann-Voos, H Schnurch, R Martinez, N P H Moler, W Risau, A Ullrich Cell 72, 835–846 (1993).

K G Peters, C De Vries, L T Williams Proc Natl Acad Sci USA 90, 8915–8919 (1993).

S Kourembanas, R L Hannan, D V Faller J Clin Invest 86, 670–674 (1990).