Induced pluripotent stem cell research: A revolutionary approach to face the challenges in drug screening
Tóm tắt
Discovery of induced pluripotent stem (iPS) cells in 2006 provided a new path for cell transplantation and drug screening. The iPS cells are stem cells derived from somatic cells that have been genetically reprogrammed into a pluripotent state. Similar to embryonic stem (ES) cells, iPS cells are capable of differentiating into three germ layers, eliminating some of the hurdles in ES cell technology. Further progress and advances in iPS cell technology, from viral to non-viral systems and from integrating to non-integrating approaches of foreign genes into the host genome, have enhanced the existing technology, making it more feasible for clinical applications. In particular, advances in iPS cell technology should enable autologous transplantation and more efficient drug discovery. Cell transplantation may lead to improved treatments for various diseases, including neurological, endocrine, and hepatic diseases. In studies on drug discovery, iPS cells generated from patient-derived somatic cells could be differentiated into specific cells expressing specific phenotypes, which could then be used as disease models. Thus, iPS cells can be helpful in understanding the mechanisms of disease progression and in cell-based efficient drug screening. Here, we summarize the history and progress of iPS cell technology, provide support for the growing interest in iPS cell applications with emphasis on practical uses in cell-based drug screening, and discuss some challenges faced in the use of this technology.
Tài liệu tham khảo
ai]Amabile, G. and Meissner, A., Induced pluripotent stem cells: current progress and potential for regenerative medicine. Trends Mol. Med., 15, 59–68 (2009).
Bar-Nur, O., Russ, H. A., Efrat, S., and Benvenisty, N., Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet Beta cells. Cell Stem Cell, 9, 17–23 (2011).
Blelloch, R., Venere, M., Yen, J., and Ramalho-Santos, M., Generation of induced pluripotent stem cells in the absence of drug selection. Cell Stem Cell, 1, 245–247 (2007).
Bosnali, M. and Edenhofer, F., Generation of transducible versions of transcription factors Oct4 and Sox2. Biol. Chem., 389, 851–861 (2008).
Boyd, A. S. and Fairchild, P. J., Approaches for immunological tolerance induction to stem cell-derived cell replacement therapies. Expert Rev. Clin. Immunol., 6, 435–448 (2010).
Brambrink, T., Foreman, R., Welstead, G. G., Lengner, C. J., Wernig, M., Suh, H., and Jaenisch, R., Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell, 2, 151–159 (2008).
Brennand, K. J., Simone, A., Jou, J., Gelboin-Burkhart, C., Tran, N., Sangar, S., Li, Y., Mu, Y., Chen, G., Yu, D., McCarthy, S., Sebat, J., and Gage, F. H., Modelling schizophrenia using human induced pluripotent stem cells. Nature, 473, 221–225 (2011).
Briggs, R. and King, T. J., Transplantation of living nuclei from blastula cells into enucleated frogs’ eggs. Proc. Natl. Acad. Sci. U. S. A., 38, 455–463 (1952).
Carvajal-Vergara, X., Sevilla, A., D’souza, S. L., Ang, Y. S., Schaniel, C., Lee, D. F., Yang, L., Kaplan, A. D., Adler, E. D., Rozov, R., Ge, Y., Cohen, N., Edelmann, L. J., Chang, B., Waghray, A., Su, J., Pardo, S., Lichtenbelt, K. D., Tartaglia, M., Gelb, B. D., and Lemischka, I. R., Patientspecific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature, 465, 808–812 (2010).
Charron, D., Suberbielle-Boissel, C., and Al-Daccak, R., Immunogenicity and allogenicity: a challenge of stem cell therapy. J. Cardiovasc. Transl. Res., 2, 130–138 (2009).
Chen, T., Shen, L., Yu, J., Wan, H., Guo, A., Chen, J., Long, Y., Zhao, J., and Pei, G., Rapamycin and other longevity-promoting compounds enhance the generation of mouse induced pluripotent stem cells. Aging Cell, 10, 908–911 (2011).
Cowan, C. A., Klimanskaya, I., McMahon, J., Atienza, J., Witmyer, J., Zucker, J. P., Wang, S., Morton, C. C., McMahon, A. P., Powers, D., and Melton, D. A., Derivation of embryonic stem-cell lines from human blastocysts. N. Engl. J. Med., 350, 1353–1356 (2004).
Davis, R. L., Weintraub, H., and Lassar, A. B., Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell, 51, 987–1000 (1987).
DiBernardo, A. B. and Cudkowicz, M. E., Translating preclinical insights into effective human trials in ALS. Biochim. Biophys. Acta, 1762, 1139–1149 (2006).
Dimos, J. T., Rodolfa, K. T., Niakan, K. K., Weisenthal, L. M., Mitsumoto, H., Chung, W., Croft, G. F., Saphier, G., Leibel, R., Goland, R., Wichterle, H., Henderson, C. E., and Eggan, K., Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science, 321, 1218–1221 (2008).
Ebert, A. D., Yu, J., Rose, F. F., Jr., Mattis, V. B., Lorson, C. L., Thomson, J. A., and Svendsen, C. N., Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature, 457, 277–280 (2009).
Ellis, J. and Bhatia, M., iPSC technology: platform for drug discovery. Point. Clin. Pharmacol. Ther., 89, 639–641 (2011).
Evans, M. J. and Kaufman, M. H., Establishment in culture of pluripotential cells from mouse embryos. Nature, 292, 154–156 (1981).
Fusaki, N., Ban, H., Nishiyama, A., Saeki, K., and Hasegawa, M., Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc. Jpn. Acad. Ser. B. Phys. Biol. Sci., 85, 348–362 (2009).
George, R. P. and Gomez-Lobo, A., The moral status of the human embryo. Perspect. Biol. Med., 48, 201–210 (2005).
Gersting, S. W., Schillinger, U., Lausier, J., Nicklaus, P., Rudolph, C., Plank, C., Reinhardt, D., and Rosenecker, J., Gene delivery to respiratory epithelial cells by magnetofection. J. Gene Med., 6, 913–922 (2004).
Ghodsizadeh, A., Taei, A., Totonchi, M., Seifinejad, A., Gourabi, H., Pournasr, B., Aghdami, N., Malekzadeh, R., Almadani, N., Salekdeh, G. H., and Baharvand, H., Generation of liver disease-specific induced pluripotent stem cells along with efficient differentiation to functional hepatocyte-like cells. Stem Cell Rev., 6, 622–632 (2010).
Gore, A., Li, Z., Fung, H. L., Young, J. E., Agarwal, S., Antosiewicz-Bourget, J., Canto, I., Giorgetti, A., Israel, M. A., Kiskinis, E., Lee, J. H., Loh, Y. H., Manos, P. D., Montserrat, N., Panopoulos, A. D., Ruiz, S., Wilbert, M. L., Yu, J., Kirkness, E. F., Izpisua Belmonte, J. C., Rossi, D. J., Thomson, J. A., Eggan, K., Daley, G. Q., Goldstein, L. S., and Zhang, K., Somatic coding mutations in human induced pluripotent stem cells. Nature, 471, 63–67 (2011).
Green, R. M., Benefiting from ‘evil’: an incipient moral problem in human stem cell research. Bioethics, 16, 544–556 (2002).
Gurdon, J. B., The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J. Embryol. Exp. Morphol., 10, 622–640 (1962).
Hanna, J., Wernig, M., Markoulaki, S., Sun, C. W., Meissner, A., Cassady, J. P., Beard, C., Brambrink, T., Wu, L. C., Townes, T. M., and Jaenisch, R., Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science, 318, 1920–1923 (2007).
Hargus, G., Cooper, O., Deleidi, M., Levy, A., Lee, K., Marlow, E., Yow, A., Soldner, F., Hockemeyer, D., Hallett, P. J., Osborn, T., Jaenisch, R., and Isacson, O., Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proc. Natl. Acad. Sci. U. S. A., 107, 15921–15926 (2010).
Hotta, A., Cheung, A. Y., Farra, N., Vijayaragavan, K., Seguin, C. A., Draper, J. S., Pasceri, P., Maksakova, I. A., Mager, D. L., Rossant, J., Bhatia, M., and Ellis, J., Isolation of human iPS cells using EOS lentiviral vectors to select for pluripotency. Nat. Methods, 6, 370–376 (2009).
Huangfu, D., Maehr, R., Guo, W., Eijkelenboom, A., Snitow, M., Chen, A. E., and Melton, D. A., Induction of pluripotent stem cells by defined factors is greatly improved by smallmolecule compounds. Nat. Biotechnol., 26, 795–797 (2008).
Hussein, S.M., Batada, N.M., Vuoristo, S., Ching, R.W., Autio, R., Narva, E., Ng, S., Sourour, M., Hamalainen, R., Olsson, C., Lundin, K., Mikkola, M., Trokovic, R., Peitz, M., Brustle, O., Jones, D.P., Alitalo, K., Lahesmaa, R., Nagy, A., Otonkoski, T., Copy number variation and selection during reprogramming to pluripotency. Nature, 471, 58–64 (2011).
Itzhaki, I., Maizels, L., Huber, I., Zwi-Dantsis, L., Caspi, O., Winterstern, A., Feldman, O., Gepstein, A., Arbel, G., Hammerman, H., Boulos, M., and Gepstein, L., Modelling the long QT syndrome with induced pluripotent stem cells. Nature, 471, 225–229 (2011).
Jia, F., Wilson, K. D., Sun, N., Gupta, D. M., Huang, M., Li, Z., Panetta, N. J., Chen, Z. Y., Robbins, R. C., Kay, M. A., Longaker, M. T., and Wu, J. C., A nonviral minicircle vector for deriving human iPS cells. Nat. Methods, 7, 197–199 (2010).
Kaji, K., Norrby, K., Paca, A., Mileikovsky, M., Mohseni, P., and Woltjen, K., Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature, 458, 771–775 (2009).
Keller, G., Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev., 19, 1129–1155 (2005).
Kim, D., Kim, C. H., Moon, J. I., Chung, Y. G., Chang, M. Y., Han, B. S., Ko, S., Yang, E., Cha, K. Y., Lanza, R., and Kim, K. S., Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell, 4, 472–476 (2009).
Kim, K., Doi, A., Wen, B., Ng, K., Zhao, R., Cahan, P., Kim, J., Aryee, M. J., Ji, H., Ehrlich, L. I., Yabuuchi, A., Takeuchi, A., Cunniff, K. C., Hongguang, H., McKinney-Freeman, S., Naveiras, O., Yoon, T. J., Irizarry, R. A., Jung, N., Seita, J., Hanna, J., Murakami, P., Jaenisch, R., Weissleder, R., Orkin, S. H., Weissman, I. L., Feinberg, A. P., and Daley, G. Q., Epigenetic memory in induced pluripotent stem cells. Nature, 467, 285–290 (2011).
King, T. J., and Briggs, R., Changes in the nuclei of differentiating gastrula cells, as demonstrated by nuclear transplantation. Proc. Natl. Acad. Sci. U. S. A., 41, 321–325 (1955).
Kiskinis, E. and Eggan, K., Progress toward the clinical application of patient-specific pluripotent stem cells. J. Clin. Invest., 120, 51–59 (2010).
Kleinsmith, L. J. and Pierce, G. B., Jr., Multipotentiality of single embryonal carcinoma cells. Cancer Res., 24, 1544–1551 (1964).
Ku, S., Soragni, E., Campau, E., Thomas, E. A., Altun, G., Laurent, L. C., Loring, J. F., Napierala, M., and Gottesfeld, J. M., Friedreich’s ataxia induced pluripotent stem cells model intergenerational GAATTC triplet repeat instability. Cell Stem Cell, 7, 631–637 (2010).
Laiosa, C. V., Stadtfeld, M., Xie, H., de Andres-Aguayo, L., Graf, T., Reprogramming of committed T cell progenitors to macrophages and dendritic cells by C/EBP < and PU.1 transcription factors. Immunity, 25, 731–744 (2006).
Laurent, L. C., Ulitsky, I., Slavin, I., Tran, H., Schork, A., Morey, R., Lynch, C., Harness, J. V., Lee, S., Barrero, M. J., Ku, S., Martynova, M., Semechkin, R., Galat, V., Gottesfeld, J., Izpisua Belmonte, J. C., Murry, C., Keirstead, H. S., Park, H. S., Schmidt, U., Laslett, A. L., Muller, F. J., Nievergelt, C. M., Shamir, R., and Loring, J. F., Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell, 8, 106–118 (2011).
Lee, C. H., Kim, E. Y., Jeon, K., Tae, J. C., Lee, K. S., Kim, Y. O., Jeong, M. Y., Yun, C. W., Jeong, D. K., Cho, S. K., Kim, J. H., Lee, H. Y., Riu, K. Z., Cho, S. G., and Park, S. P., Simple, efficient, and reproducible gene transfection of mouse embryonic stem cells by magnetofection. Stem Cells Dev., 17, 133–141 (2008).
Lee, C. H., Kim, J. H., Lee, H. J., Jeon, K., Lim, H., Choi, H., Lee, E. R., Park, S. H., Park, J. Y., Hong, S., Kim, S., and Cho, S. G., The generation of iPS cells using non-viral magnetic nanoparticle based transfection. Biomaterials, 32, 6683–6691 (2011).
Lee, G., Papapetrou, E. P., Kim, H., Chambers, S. M., Tomishima, M. J., Fasano, C. A., Ganat, Y. M., Menon, J., Shimizu, F., Viale, A., Tabar, V., Sadelain, M., and Studer, L., Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature, 461, 402–406 (2009).
Li, Z., Yang, C. S., Nakashima, K., and Rana, T. M., Small RNA-mediated regulation of iPS cell generation. EMBO J., 30, 823–834 (2011).
Lin, S. L., Chang, D. C., Chang-Lin, S., Lin, C. H., Wu, D. T., Chen, D. T., and Ying, S. Y., Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. RNA, 14, 2115–2124 (2008).
Lodi, D., Iannitti, T., and Palmieri, B., Stem cells in clinical practice: applications and warnings. J. Exp. Clin. Cancer Res., 30, 9 (2011).
Maehr, R., Chen, S., Snitow, M., Ludwig, T., Yagasaki, L., Goland, R., Leibel, R. L., and Melton, D. A., Generation of pluripotent stem cells from patients with type 1 diabetes. Proc. Natl. Acad. Sci. U. S. A., 106, 15768–15773 (2009).
Maherali, N. and Hochedlinger, K., Guidelines and techniques for the generation of induced pluripotent stem cells. Cell Stem Cell, 3, 595–605 (2008).
Mali, P., Ye, Z., Hommond, H. H., Yu, X., Lin, J., Chen, G., Zou, J., and Cheng, L., Improved efficiency and pace of generating induced pluripotent stem cells from human adult and fetal fibroblasts. Stem Cells, 26, 1998–2005 (2008).
Marchetto, M. C., Carromeu, C., Acab, A., Yu, D., Yeo, G. W., Mu, Y., Chen, G., Gage, F. H., and Muotri, A. R., A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell, 143, 527–539 (2010).
Martin, G. R., Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. U. S. A., 78, 7634–7638 (1981).
Mauritz, C., Schwanke, K., Reppel, M., Neef, S., Katsirntaki, K., Maier, L. S., Nguemo, F., Menke, S., Haustein, M., Hescheler, J., Hasenfuss, G., and Martin, U., Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation, 118, 507–517 (2008).
Mayshar, Y., Ben-David, U., Lavon, N., Biancotti, J. C., Yakir, B., Clark, A. T., Plath, K., Lowry, W. E., and Benvenisty, N., Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell, 7, 521–531 (2010).
Miura, K., Okada, Y., Aoi, T., Okada, A., Takahashi, K., Okita, K., Nakagawa, M., Koyanagi, M., Tanabe, K., Ohnuki, M., Ogawa, D., Ikeda, E., Okano, H., and Yamanaka, S., Variation in the safety of induced pluripotent stem cell lines. Nat. Biotechnol., 27, 743–745 (2009).
Moretti, A., Bellin, M., Welling, A., Jung, C. B., Lam, J. T., Bott-Flugel, L., Dorn, T., Goedel, A., Hohnke, C., Hofmann, F., Seyfarth, M., Sinnecker, D., Schomig, A., and Laugwitz, K. L., Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N. Engl. J. Med., 363, 1397–1409 (2010).
Nakagawa, M., Koyanagi, M., Tanabe, K., Takahashi, K., Ichisaka, T., Aoi, T., Okita, K., Mochiduki, Y., Takizawa, N., and Yamanaka, S., Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol., 26, 101–106 (2008).
Narsinh, K. H., Jia, F., Robbins, R. C., Kay, M. A., Longaker, M. T., and Wu, J. C., Generation of adult human induced pluripotent stem cells using nonviral minicircle DNA vectors. Nat. Protoc., 6, 78–88 (2011).
Okita, K., Ichisaka, T., and Yamanaka, S., Generation of germline-competent induced pluripotent stem cells. Nature, 448, 313–317 (2007).
Okita, K., Nakagawa, M., Hyenjong, H., Ichisaka, T., and Yamanaka, S., Generation of mouse induced pluripotent stem cells without viral vectors. Science, 322, 949–953 (2008).
Park, I. H., Arora, N., Huo, H., Maherali, N., Ahfeldt, T., Shimamura, A., Lensch, M. W., Cowan, C., Hochedlinger, K., and Daley, G. Q., Disease-specific induced pluripotent stem cells. Cell, 134, 877–886 (2008a).
Park, I. H., Zhao, R., West, J. A., Yabuuchi, A., Huo, H., Ince, T. A., Lerou, P. H., Lensch, M. W., and Daley, G. Q., Reprogramming of human somatic cells to pluripotency with defined factors. Nature, 451, 141–146 (2008b).
Paul, S. M., Mytelka, D. S., Dunwiddie, C. T., Persinger, C. C., Munos, B. H., Lindborg, S. R., and Schacht, A. L., How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat. Rev. Drug Discov., 9, 203–214 (2010).
Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S., and Marshak, D. R., Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143–147 (1999).
Rashid, S. T., Corbineau, S., Hannan, N., Marciniak, S. J., Miranda, E., Alexander, G., Huang-Doran, I., Griffin, J., Ahrlund-Richter, L., Skepper, J., Semple, R., Weber, A., Lomas, D. A., and Vallier, L., Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells. J. Clin. Invest., 120, 3127–3136 (2010).
Raya, A., Rodriguez-Piza, I., Guenechea, G., Vassena, R., Navarro, S., Barrero, M. J., Consiglio, A., Castella, M., Rio, P., Sleep, E., Gonzalez, F., Tiscornia, G., Garreta, E., Aasen, T., Veiga, A., Verma, I. M., Surralles, J., Bueren, J., and Izpisua Belmonte, J. C., Disease-corrected haemato poietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature, 460, 53–59 (2009).
Rubin, L. L., Stem cells and drug discovery: the beginning of a new era? Cell, 132, 549–552 (2008).
Saha, K., and Jaenisch, R., Technical challenges in using human induced pluripotent stem cells to model disease. Cell Stem Cell, 5, 584–595 (2009).
Si-Tayeb, K., Noto, F. K., Nagaoka, M., Li, J., Battle, M. A., Duris, C., North, P. E., Dalton, S., and Duncan, S. A., Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology, 51, 297–305 (2010).
Soldner, F., Hockemeyer, D., Beard, C., Gao, Q., Bell, G. W., Cook, E. G., Hargus, G., Blak, A., Cooper, O., Mitalipova, M., Isacson, O., and Jaenisch, R., Parkinson’s disease patientderived induced pluripotent stem cells free of viral reprogramming factors. Cell, 136, 964–977 (2009).
Somers, A., Jean, J. C., Sommer, C. A., Omari, A., Ford, C. C., Mills, J. A., Ying, L., Sommer, A. G., Jean, J. M., Smith, B. W., Lafyatis, R., Demierre, M. F., Weiss, D. J., French, D. L., Gadue, P., Murphy, G. J., Mostoslavsky, G., and Kotton, D. N., Generation of transgene-free lung disease-specific human induced pluripotent stem cells using a single excisable lentiviral stem cell cassette. Stem Cells, 28, 1728–1740 (2010).
Stadtfeld, M., and Hochedlinger, K., Induced pluripotency: history, mechanisms, and applications. Genes Dev., 24, 2239–2263 (2010).
Stadtfeld, M., Maherali, N., Breault, D. T., and Hochedlinger, K., Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell, 2, 230–240 (2008a).
Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G., and Hochedlinger, K., Induced pluripotent stem cells generated without viral integration. Science, 322, 945–949 (2008b).
Swistowski, A., Peng, J., Liu, Q., Mali, P., Rao, M. S., Cheng, L., and Zeng, X., Efficient generation of functional dopaminergic neurons from human induced pluripotent stem cells under defined conditions. Stem Cells, 28, 1893–1904 (2010).
Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861–872 (2007).
Takahashi, K. and Yamanaka, S., Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676 (2006).
Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., and Jones, J. M., Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147 (1998).
Tsuji, O., Miura, K., Okada, Y., Fujiyoshi, K., Mukaino, M., Nagoshi, N., Kitamura, K., Kumagai, G., Nishino, M., Tomisato, S., Higashi, H., Nagai, T., Katoh, H., Kohda, K., Matsuzaki, Y., Yuzaki, M., Ikeda, E., Toyama, Y., Nakamura, M., Yamanaka, S., and Okano, H., Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury. Proc. Natl. Acad. Sci. U. S. A., 107, 12704–12709 (2010).
Vierbuchen, T., Ostermeier, A., Pang, Z.P., Kokubu, Y., Sudhof, T.C., Wernig, M., Direct conversion of fibroblasts to functional neurons by defined factors. Nature, 463, 1035–1041 (2010).
Wang, Q., Xu, X., Li, J., Liu, J., Gu, H., Zhang, R., Chen, J., Kuang, Y., Fei, J., Jiang, C., Wang, P., Pei, D., Ding, S., and Xie, X., Lithium, an anti-psychotic drug, greatly enhances the generation of induced pluripotent stem cells. Cell Res., 21, 1424–1435 (2011).
Weissman, I. L., Stem cells: units of development, units of regeneration, and units in evolution. Cell, 100, 157–168 (2000).
Wernig, M., Zhao, J. P., Pruszak, J., Hedlund, E., Fu, D., Soldner, F., Broccoli, V., Constantine-Paton, M., Isacson, O., and Jaenisch, R., Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc. Natl. Acad. Sci. U. S. A., 105, 5856–5861 (2008).
Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., and Campbell, K. H., Viable offspring derived from fetal and adult mammalian cells. Nature, 385, 810–813 (1997).
Woltjen, K., Michael, I. P., Mohseni, P., Desai, R., Mileikovsky, M., Hamalainen, R., Cowling, R., Wang, W., Liu, P., Gertsenstein, M., Kaji, K., Sung, H. K., and Nagy, A., piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature, 458, 766–770 (2009).
Xie, H., Ye, M., Feng, R., Graf, T., Stepwise reprogramming of B cells into macrophages. Cell, 117, 663–676 (2004).
Xu, D., Alipio, Z., Fink, L. M., Adcock, D. M., Yang, J., Ward, D. C., and Ma, Y., Phenotypic correction of murine hemophilia A using an iPS cell-based therapy. Proc. Natl. Acad. Sci. U. S. A., 106, 808–813 (2009).
Yagi, T., Ito, D., Okada, Y., Akamatsu, W., Nihei, Y., Yoshizaki, T., Yamanaka, S., Okano, H., and Suzuki, N., Modeling familial Alzheimer’s disease with induced pluripotent stem cells. Hum. Mol. Genet., 20, 4530–4539 (2011).
Yamanaka, S., A fresh look at iPS cells. Cell, 137, 13–17 (2009).
Yang, C. S., Li, Z., and Rana, T. M., microRNAs modulate iPS cell generation. RNA, 17, 1451–1460 (2011).
Yang, J., Cai, J., Zhang, Y., Wang, X., Li, W., Xu, J., Li, F., Guo, X., Deng, K., Zhong, M., Chen, Y., Lai, L., Pei, D., and Esteban, M. A., Induced pluripotent stem cells can be used to model the genomic imprinting disorder Prader-Willi syndrome. J. Biol. Chem., 285, 40303–40311 (2010).
Ye, L., Chang, J. C., Lin, C., Sun, X., Yu, J., and Kan, Y. W., Induced pluripotent stem cells offer new approach to therapy in thalassemia and sickle cell anemia and option in prenatal diagnosis in genetic diseases. Proc. Natl. Acad. Sci. U. S. A., 106, 9826–9830 (2009a).
Ye, Z., Zhan, H., Mali, P., Dowey, S., Williams, D. M., Jang, Y. Y., Dang, C. V., Spivak, J. L., Moliterno, A. R., and Cheng, L., Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood, 114, 5473–5480 (2009b).
Yoshizaki, S., Nishi, M., Kondo, A., Kojima, Y., Yamamoto, N., and Ryo, A., Vaccination with Human Induced Pluripotent Stem Cells Creates an Antigen-Specific Immune Response Against HIV-1 gp160. Front. Microbiol., 2, 1–8 (2011).
Yu, J., Hu, K., Smuga-Otto, K., Tian, S., Stewart, R., Slukvin, II, and Thomson, J. A., Human induced pluripotent stem cells free of vector and transgene sequences. Science, 324, 797–801 (2009).
Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., Nie, J., Jonsdottir, G. A., Ruotti, V., Stewart, R., Slukvin, II, and Thomson, J. A., Induced pluripotent stem cell lines derived from human somatic cells. Science, 318, 1917–1920 (2007).
Zhang, N., An, M. C., Montoro, D., and Ellerby, L. M., Characterization of human huntington’s disease cell model from induced pluripotent stem cells. PLoS Curr., 2, RRN1193 (2010).
Zhao, T., Zhang, Z. N., Rong, Z., and Xu, Y., Immunogenicity of induced pluripotent stem cells. Nature, 474, 212–215 (2011).
Zhou, H., Wu, S., Joo, J. Y., Zhu, S., Han, D. W., Lin, T., Trauger, S., Bien, G., Yao, S., Zhu, Y., Siuzdak, G., Scholer, H. R., Duan, L., and Ding, S., Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell, 4, 381–384 (2009).
Zhou, Q., Brown, J., Kanarek, A., Rajagopal, J., and Melton, D. A., In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature, 455, 627–632 (2008).