All-Electrical Ca2+-Independent Signal Transduction Mediates Attractive Sodium Taste in Taste Buds
Tài liệu tham khảo
Avenet, 1991, Noninvasive recording of receptor cell action potentials and sustained currents from single taste buds maintained in the tongue: the response to mucosal NaCl and amiloride, J. Membr. Biol., 124, 33, 10.1007/BF01871362
Bartel, 2006, Nucleoside triphosphate diphosphohydrolase-2 is the ecto-ATPase of type I cells in taste buds, J. Comp. Neurol., 497, 1, 10.1002/cne.20954
Bigiani, 2017, Calcium homeostasis modulator 1-like currents in rat fungiform taste cells expressing amiloride-sensitive sodium currents, Chem. Senses, 42, 343, 10.1093/chemse/bjx013
Bigiani, 2007, Localization of amiloride-sensitive sodium current and voltage-gated calcium currents in rat fungiform taste cells, J. Neurophysiol., 98, 2483, 10.1152/jn.00716.2007
Bo, 1999, Localization of ATP-gated P2X2 and P2X3 receptor immunoreactive nerves in rat taste buds, Neuroreport, 10, 1107, 10.1097/00001756-199904060-00037
Canessa, 1994, Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits, Nature, 367, 463, 10.1038/367463a0
Chandrashekar, 2010, The cells and peripheral representation of sodium taste in mice, Nature, 464, 297, 10.1038/nature08783
Chang, 2010, A proton current drives action potentials in genetically identified sour taste cells, Proc. Natl. Acad. Sci. USA, 107, 22320, 10.1073/pnas.1013664107
Chaudhari, 2010, The cell biology of taste, J. Cell Biol., 190, 285, 10.1083/jcb.201003144
Chen, 2013, Ultrasensitive fluorescent proteins for imaging neuronal activity, Nature, 499, 295, 10.1038/nature12354
Doolin, 1996, Distribution and characterization of functional amiloride-sensitive sodium channels in rat tongue, J. Gen. Physiol., 107, 545, 10.1085/jgp.107.4.545
Finger, 2005, ATP signaling is crucial for communication from taste buds to gustatory nerves, Science, 310, 1495, 10.1126/science.1118435
Halpern, 1998, Amiloride and vertebrate gustatory responses to NaCl, Neurosci. Biobehav. Rev., 23, 5, 10.1016/S0149-7634(97)00063-8
Heck, 1984, Salt taste transduction occurs through an amiloride-sensitive sodium transport pathway, Science, 223, 403, 10.1126/science.6691151
Hummler, 2002, Conditional gene targeting of the Scnn1a (αENaC) gene locus, Genesis, 32, 169, 10.1002/gene.10041
Iwatsuki, 2012, Sense of taste in the gastrointestinal tract, J. Pharmacol. Sci., 118, 123, 10.1254/jphs.11R08CP
Jarvie, 2017, HSD2 neurons in the hindbrain drive sodium appetite, Nat. Neurosci., 20, 167, 10.1038/nn.4451
Kashio, 2019, CALHM1/CALHM3 channel is intrinsically sorted to the basolateral membrane of epithelial cells including taste cells, Sci. Rep., 9, 2681, 10.1038/s41598-019-39593-5
Kretz, 1999, Differential expression of RNA and protein of the three pore-forming subunits of the amiloride-sensitive epithelial sodium channel in taste buds of the rat, J. Histochem. Cytochem., 47, 51, 10.1177/002215549904700106
Liman, 2014, Peripheral coding of taste, Neuron, 81, 984, 10.1016/j.neuron.2014.02.022
Ma, 2018, CALHM3 is essential for rapid ion channel-mediated purinergic neurotransmission of GPCR-mediated tastes, Neuron, 98, 547, 10.1016/j.neuron.2018.03.043
Medler, 2003, Electrophysiological characterization of voltage-gated currents in defined taste cell types of mice, J. Neurosci., 23, 2608, 10.1523/JNEUROSCI.23-07-02608.2003
Miyamoto, 1996, Whole-cell recording from non-dissociated taste cells in mouse taste bud, J. Neurosci. Methods, 64, 245, 10.1016/0165-0270(95)00138-7
Mozaffarian, 2014, Global sodium consumption and death from cardiovascular causes, N. Engl. J. Med., 371, 624, 10.1056/NEJMoa1304127
Murtaza, 2017, Alteration in taste perception in cancer: causes and strategies of treatment, Front. Physiol., 8, 134, 10.3389/fphys.2017.00134
Ninomiya, 1998, Reinnervation of cross-regenerated gustatory nerve fibers into amiloride-sensitive and amiloride-insensitive taste receptor cells, Proc. Natl. Acad. Sci. USA, 95, 5347, 10.1073/pnas.95.9.5347
Noreng, 2018, Structure of the human epithelial sodium channel by cryo-electron microscopy, eLife, 7, e39340, 10.7554/eLife.39340
Oka, 2013, High salt recruits aversive taste pathways, Nature, 494, 472, 10.1038/nature11905
Pumplin, 1997, Light and dark cells of rat vallate taste buds are morphologically distinct cell types, J. Comp. Neurol., 378, 389, 10.1002/(SICI)1096-9861(19970217)378:3<389::AID-CNE7>3.0.CO;2-#
Richter, 2003, Sour taste stimuli evoke Ca2+ and pH responses in mouse taste cells, J. Physiol., 547, 475, 10.1113/jphysiol.2002.033811
Roebber, 2019, The role of the anion in salt (NaCl) detection by mouse taste buds, J. Neurosci., 39, 6224, 10.1523/JNEUROSCI.2367-18.2019
Romanov, 2008, Voltage dependence of ATP secretion in mammalian taste cells, J. Gen. Physiol., 132, 731, 10.1085/jgp.200810108
Romanov, 2018, Chemical synapses without synaptic vesicles: Purinergic neurotransmission through a CALHM1 channel-mitochondrial signaling complex, Sci. Signal, 11, eaao1815, 10.1126/scisignal.aao1815
Roper, 2015, The taste of table salt, Pflugers Arch., 467, 457, 10.1007/s00424-014-1683-z
Roper, 2017, Taste buds: cells, signals and synapses, Nat. Rev. Neurosci., 18, 485, 10.1038/nrn.2017.68
Schiffman, 1983, Amiloride reduces the taste intensity of Na+ and Li+ salts and sweeteners, Proc. Natl. Acad. Sci. USA, 80, 6136, 10.1073/pnas.80.19.6136
Sclafani, 2018, Greater reductions in fat preferences in CALHM1 than CD36 knockout mice, Am. J. Physiol. Regul. Integr. Comp. Physiol., 315, R576, 10.1152/ajpregu.00015.2018
Shigemura, 2016, Recent advances in molecular mechanisms of taste signaling and modifying, Int. Rev. Cell Mol. Biol., 323, 71, 10.1016/bs.ircmb.2015.12.004
Stähler, 2008, A role of the epithelial sodium channel in human salt taste transduction?, Chem Percept, 1, 78, 10.1007/s12078-008-9006-4
Strazzullo, 2009, Salt intake, stroke, and cardiovascular disease: meta-analysis of prospective studies, BMJ, 339, b4567, 10.1136/bmj.b4567
Taruno, 2013, How do taste cells lacking synapses mediate neurotransmission? CALHM1, a voltage-gated ATP channel, BioEssays, 35, 1111, 10.1002/bies.201300077
Taruno, 2013, CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes, Nature, 495, 223, 10.1038/nature11906
Taruno, 2017, Post-translational palmitoylation controls the voltage gating and lipid raft association of the CALHM1 channel, J. Physiol., 595, 6121, 10.1113/JP274164
Teng, 2019, Cellular and neural responses to sour stimuli require the proton channel Otop1, Curr. Biol., 29, 3647, 10.1016/j.cub.2019.08.077
Tordoff, 2014, Salty taste deficits in CALHM1 knockout mice, Chem. Senses, 39, 515, 10.1093/chemse/bju020
Tu, 2018, An evolutionarily conserved gene family encodes proton-selective ion channels, Science, 359, 1047, 10.1126/science.aao3264
Vandenbeuch, 2008, Amiloride-sensitive channels in type I fungiform taste cells in mouse, BMC Neurosci., 9, 1, 10.1186/1471-2202-9-1
Vandenbeuch, 2010, Capacitance measurements of regulated exocytosis in mouse taste cells, J. Neurosci., 30, 14695, 10.1523/JNEUROSCI.1570-10.2010
Vandenbeuch, 2013, Role of the ectonucleotidase NTPDase2 in taste bud function, Proc. Natl. Acad. Sci. USA, 110, 14789, 10.1073/pnas.1309468110
2012
Yang, 2020, Three-dimensional reconstructions of mouse circumvallate taste buds using serial blockface scanning electron microscopy: I. Cell types and the apical region of the taste bud, J. Comp. Neurol., 528, 756, 10.1002/cne.24779
Ye, 2016, The K+ channel KIR2.1 functions in tandem with proton influx to mediate sour taste transduction, Proc. Natl. Acad. Sci. USA, 113, E229, 10.1073/pnas.1514282112
Yoshida, 2009, NaCl responsive taste cells in the mouse fungiform taste buds, Neuroscience, 159, 795, 10.1016/j.neuroscience.2008.12.052
Zariwala, 2012, A Cre-dependent GCaMP3 reporter mouse for neuronal imaging in vivo, J. Neurosci., 32, 3131, 10.1523/JNEUROSCI.4469-11.2012
Zhang, 2019, Sour sensing from the tongue to the brain, Cell, 179, 392, 10.1016/j.cell.2019.08.031