All-Electrical Ca2+-Independent Signal Transduction Mediates Attractive Sodium Taste in Taste Buds

Neuron - Tập 106 - Trang 816-829.e6 - 2020
Kengo Nomura1, Miho Nakanishi1, Fumiyoshi Ishidate2, Kazumi Iwata3, Akiyuki Taruno1,4
1Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
2Center for Meso-Bio Single-Molecule Imaging, Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
3Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
4Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama, 332-0012, Japan

Tài liệu tham khảo

Avenet, 1991, Noninvasive recording of receptor cell action potentials and sustained currents from single taste buds maintained in the tongue: the response to mucosal NaCl and amiloride, J. Membr. Biol., 124, 33, 10.1007/BF01871362 Bartel, 2006, Nucleoside triphosphate diphosphohydrolase-2 is the ecto-ATPase of type I cells in taste buds, J. Comp. Neurol., 497, 1, 10.1002/cne.20954 Bigiani, 2017, Calcium homeostasis modulator 1-like currents in rat fungiform taste cells expressing amiloride-sensitive sodium currents, Chem. Senses, 42, 343, 10.1093/chemse/bjx013 Bigiani, 2007, Localization of amiloride-sensitive sodium current and voltage-gated calcium currents in rat fungiform taste cells, J. Neurophysiol., 98, 2483, 10.1152/jn.00716.2007 Bo, 1999, Localization of ATP-gated P2X2 and P2X3 receptor immunoreactive nerves in rat taste buds, Neuroreport, 10, 1107, 10.1097/00001756-199904060-00037 Canessa, 1994, Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits, Nature, 367, 463, 10.1038/367463a0 Chandrashekar, 2010, The cells and peripheral representation of sodium taste in mice, Nature, 464, 297, 10.1038/nature08783 Chang, 2010, A proton current drives action potentials in genetically identified sour taste cells, Proc. Natl. Acad. Sci. USA, 107, 22320, 10.1073/pnas.1013664107 Chaudhari, 2010, The cell biology of taste, J. Cell Biol., 190, 285, 10.1083/jcb.201003144 Chen, 2013, Ultrasensitive fluorescent proteins for imaging neuronal activity, Nature, 499, 295, 10.1038/nature12354 Doolin, 1996, Distribution and characterization of functional amiloride-sensitive sodium channels in rat tongue, J. Gen. Physiol., 107, 545, 10.1085/jgp.107.4.545 Finger, 2005, ATP signaling is crucial for communication from taste buds to gustatory nerves, Science, 310, 1495, 10.1126/science.1118435 Halpern, 1998, Amiloride and vertebrate gustatory responses to NaCl, Neurosci. Biobehav. Rev., 23, 5, 10.1016/S0149-7634(97)00063-8 Heck, 1984, Salt taste transduction occurs through an amiloride-sensitive sodium transport pathway, Science, 223, 403, 10.1126/science.6691151 Hummler, 2002, Conditional gene targeting of the Scnn1a (αENaC) gene locus, Genesis, 32, 169, 10.1002/gene.10041 Iwatsuki, 2012, Sense of taste in the gastrointestinal tract, J. Pharmacol. Sci., 118, 123, 10.1254/jphs.11R08CP Jarvie, 2017, HSD2 neurons in the hindbrain drive sodium appetite, Nat. Neurosci., 20, 167, 10.1038/nn.4451 Kashio, 2019, CALHM1/CALHM3 channel is intrinsically sorted to the basolateral membrane of epithelial cells including taste cells, Sci. Rep., 9, 2681, 10.1038/s41598-019-39593-5 Kretz, 1999, Differential expression of RNA and protein of the three pore-forming subunits of the amiloride-sensitive epithelial sodium channel in taste buds of the rat, J. Histochem. Cytochem., 47, 51, 10.1177/002215549904700106 Liman, 2014, Peripheral coding of taste, Neuron, 81, 984, 10.1016/j.neuron.2014.02.022 Ma, 2018, CALHM3 is essential for rapid ion channel-mediated purinergic neurotransmission of GPCR-mediated tastes, Neuron, 98, 547, 10.1016/j.neuron.2018.03.043 Medler, 2003, Electrophysiological characterization of voltage-gated currents in defined taste cell types of mice, J. Neurosci., 23, 2608, 10.1523/JNEUROSCI.23-07-02608.2003 Miyamoto, 1996, Whole-cell recording from non-dissociated taste cells in mouse taste bud, J. Neurosci. Methods, 64, 245, 10.1016/0165-0270(95)00138-7 Mozaffarian, 2014, Global sodium consumption and death from cardiovascular causes, N. Engl. J. Med., 371, 624, 10.1056/NEJMoa1304127 Murtaza, 2017, Alteration in taste perception in cancer: causes and strategies of treatment, Front. Physiol., 8, 134, 10.3389/fphys.2017.00134 Ninomiya, 1998, Reinnervation of cross-regenerated gustatory nerve fibers into amiloride-sensitive and amiloride-insensitive taste receptor cells, Proc. Natl. Acad. Sci. USA, 95, 5347, 10.1073/pnas.95.9.5347 Noreng, 2018, Structure of the human epithelial sodium channel by cryo-electron microscopy, eLife, 7, e39340, 10.7554/eLife.39340 Oka, 2013, High salt recruits aversive taste pathways, Nature, 494, 472, 10.1038/nature11905 Pumplin, 1997, Light and dark cells of rat vallate taste buds are morphologically distinct cell types, J. Comp. Neurol., 378, 389, 10.1002/(SICI)1096-9861(19970217)378:3<389::AID-CNE7>3.0.CO;2-# Richter, 2003, Sour taste stimuli evoke Ca2+ and pH responses in mouse taste cells, J. Physiol., 547, 475, 10.1113/jphysiol.2002.033811 Roebber, 2019, The role of the anion in salt (NaCl) detection by mouse taste buds, J. Neurosci., 39, 6224, 10.1523/JNEUROSCI.2367-18.2019 Romanov, 2008, Voltage dependence of ATP secretion in mammalian taste cells, J. Gen. Physiol., 132, 731, 10.1085/jgp.200810108 Romanov, 2018, Chemical synapses without synaptic vesicles: Purinergic neurotransmission through a CALHM1 channel-mitochondrial signaling complex, Sci. Signal, 11, eaao1815, 10.1126/scisignal.aao1815 Roper, 2015, The taste of table salt, Pflugers Arch., 467, 457, 10.1007/s00424-014-1683-z Roper, 2017, Taste buds: cells, signals and synapses, Nat. Rev. Neurosci., 18, 485, 10.1038/nrn.2017.68 Schiffman, 1983, Amiloride reduces the taste intensity of Na+ and Li+ salts and sweeteners, Proc. Natl. Acad. Sci. USA, 80, 6136, 10.1073/pnas.80.19.6136 Sclafani, 2018, Greater reductions in fat preferences in CALHM1 than CD36 knockout mice, Am. J. Physiol. Regul. Integr. Comp. Physiol., 315, R576, 10.1152/ajpregu.00015.2018 Shigemura, 2016, Recent advances in molecular mechanisms of taste signaling and modifying, Int. Rev. Cell Mol. Biol., 323, 71, 10.1016/bs.ircmb.2015.12.004 Stähler, 2008, A role of the epithelial sodium channel in human salt taste transduction?, Chem Percept, 1, 78, 10.1007/s12078-008-9006-4 Strazzullo, 2009, Salt intake, stroke, and cardiovascular disease: meta-analysis of prospective studies, BMJ, 339, b4567, 10.1136/bmj.b4567 Taruno, 2013, How do taste cells lacking synapses mediate neurotransmission? CALHM1, a voltage-gated ATP channel, BioEssays, 35, 1111, 10.1002/bies.201300077 Taruno, 2013, CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes, Nature, 495, 223, 10.1038/nature11906 Taruno, 2017, Post-translational palmitoylation controls the voltage gating and lipid raft association of the CALHM1 channel, J. Physiol., 595, 6121, 10.1113/JP274164 Teng, 2019, Cellular and neural responses to sour stimuli require the proton channel Otop1, Curr. Biol., 29, 3647, 10.1016/j.cub.2019.08.077 Tordoff, 2014, Salty taste deficits in CALHM1 knockout mice, Chem. Senses, 39, 515, 10.1093/chemse/bju020 Tu, 2018, An evolutionarily conserved gene family encodes proton-selective ion channels, Science, 359, 1047, 10.1126/science.aao3264 Vandenbeuch, 2008, Amiloride-sensitive channels in type I fungiform taste cells in mouse, BMC Neurosci., 9, 1, 10.1186/1471-2202-9-1 Vandenbeuch, 2010, Capacitance measurements of regulated exocytosis in mouse taste cells, J. Neurosci., 30, 14695, 10.1523/JNEUROSCI.1570-10.2010 Vandenbeuch, 2013, Role of the ectonucleotidase NTPDase2 in taste bud function, Proc. Natl. Acad. Sci. USA, 110, 14789, 10.1073/pnas.1309468110 2012 Yang, 2020, Three-dimensional reconstructions of mouse circumvallate taste buds using serial blockface scanning electron microscopy: I. Cell types and the apical region of the taste bud, J. Comp. Neurol., 528, 756, 10.1002/cne.24779 Ye, 2016, The K+ channel KIR2.1 functions in tandem with proton influx to mediate sour taste transduction, Proc. Natl. Acad. Sci. USA, 113, E229, 10.1073/pnas.1514282112 Yoshida, 2009, NaCl responsive taste cells in the mouse fungiform taste buds, Neuroscience, 159, 795, 10.1016/j.neuroscience.2008.12.052 Zariwala, 2012, A Cre-dependent GCaMP3 reporter mouse for neuronal imaging in vivo, J. Neurosci., 32, 3131, 10.1523/JNEUROSCI.4469-11.2012 Zhang, 2019, Sour sensing from the tongue to the brain, Cell, 179, 392, 10.1016/j.cell.2019.08.031