Lorentz spacetimes of constant curvature

Geometriae Dedicata - Tập 126 - Trang 3-45 - 2007
Geoffrey Mess1
1Department of Mathematics, University of California at Los Angeles, Los Angeles, USA

Tóm tắt

This paper is unpublished work of Geoffrey Mess written in 1990, which gives a classification of flat and anti-de Sitter domains of dependence in 2+1 dimensions.

Tài liệu tham khảo

Hirsch M.W. (1953). Immersion of Manifolds. Trans. Am. Math. Soc. 93: 242–276 Witten E. (1989). 2+1 dimensional gravity as an exactly soluble system. Nuclear Phys. B 311: 46 Labourie F. (1992). Surfaces convexes dans l’espace hyperbolique et \({\mathbb{CP}}^1\)-structures. J. London Math. Soc. (2) 45(3): 549–565 Carrière Y. (1989). Autour de la conjecture de L. Markus sur les variétés affines. Invent. Math. 95(3): 615–628 Witten, E.: On the structure of the topological phase of two dimensional quantum gravity. Preprint IASSNS-HEP-89/66, Institute for Advanced Study Witten E. (1989). Topology-changing amplitudes in (2+1)-dimensional gravity. Nuclear Phys. B 323(1): 113–140 Goldman W.M. (1988). Topological components of spaces of representations. Invent. Math. 93(3): 557–607 Milnor J. (1958). On the existence of a connection with curvature zero. Comment. Math. Helv. 32: 215–223 Wood J.W. (1971). Bundles with totally disconnected structure group. Comment. Math. Helv. 46: 257–273 Benzécri, J.-P.: Variétés localement affines. In: Semin. de Topologie et de Geometrie differentielle Ch. Ehresmann 2 (1958/60), No.7, 1961 Benzécri J.-P. (1960). Sur les variétés localement affines et localement projectives. Bull. Soc. Math. France 88: 229–332 Scott P. (1978). Subgroups of surface groups are almost geometric. J. London Math. Soc. (2) 17(3): 555–565 Beardon A.F. (1983). The Geometry of Discrete Groups, Graduate Texts in Mathematics, vol. 91. Springer-Verlag, New York Matsumoto S. (1987). Some remarks on foliated S 1 bundles. Invent. Math. 90(2): 343–358 Milnor J. (1977). On fundamental groups of complete affinely flat manifolds. Adv. Math. 25(2): 178–187 Thurston, W.P.: The Geometry and Topology of Three-manifolds. Lecture notes, Princeton University (1978) Lok, L.: Deformations of locally homogeneous spaces and Kleinian groups. Thesis, Columbia University (1984) Canary, R.D., Epstein, D.B.A., Green, P.: Notes on Notes of Thurston, Analytical and Geometric Aspects of Hyperbolic Space (Coventry/Durham, 1984), London Math. Soc. Lecture Note Ser., vol. 111, (pp. 3–92). Cambridge Univ. Press, Cambridge (1987) Goldman, W.M.: Geometric structures on manifolds and varieties of representations. In: Geometry of Group Representations (Boulder, CO, 1987), volume 74 of Contemp. Math., pages 169–198. Amer. Math. Soc., Providence, RI (1988) Geroch, R., Horowitz, G.T.: Global structure of spacetimes. In: General Relativity, pp. 212–293. Cambridge University Press, Cambridge (1979) Casson, A.J., Bleiler, S.A.: Automorphisms of Surfaces after Nielsen and Thurston, London Mathematical Society Student Texts, vol. 9. Cambridge University Press, Cambridge (1988) Epstein, D.B.A., Marden, A.: Convex Hulls in Hyperbolic Space, a Theorem of Sullivan, and Measured Pleated Surfaces, Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984), London Math. Soc. Lecture Note Ser., vol. 111, pp. 113–253. Cambridge Univ. Press, Cambridge (1987) Goldman W.M. (1984). The symplectic nature of fundamental groups of surfaces. Adv. Math. 54(2): 200–225 Moncrief V. (1989). Reduction of the Einstein equations in 2+1 dimensions to a Hamiltonian system over Teichmüller space. J. Math. Phys. 30(12): 2907–2914 Kulkarni, R.S., Pinkall, U.: Uniformization of Geometric Structures with Applications to Conformal Geometry, Differential geometry, Peñí scola 1985, Lecture Notes in Math., vol. 1209, pp. 190–209. Springer, Berlin (1986) Goldman W.M. (1987). Projective structures with Fuchsian holonomy. J. Differ. Geom. 25(3): 297–326 Apanasov, B.N.: Nontriviality of Teichmüller Space for Kleinian Group in space, Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978) (Princeton, N.J.), Ann. of Math. Stud., vol. 97, pp. 21–31. Princeton Univ. Press (1981) Gunning, R.C.: Lectures on Riemann Surfaces, Princeton Mathematical Notes. Princeton University Press, Princeton, NJ (1966) Gallo D.M. (1989). Prescribed holonomy for projective structures on compact surfaces. Bull. Am. Math. Soc. (N.S.) 20(1): 31–34 Hejhal, D.A.: Monodromy Groups and Linearly Polymorphic Functions, Discontinuous groups and Riemann Surfaces (Proc. Conf., Univ. Maryland, College Park, Md., 1973), Ann. of Math. Studies, No. 79, pp. 247–261. Princeton Univ. Press, Princeton, NJ (1974) Hejhal D.A. (1975). Monodromy groups and linearly polymorphic functions. Acta Math. 135(1): 1–55 Gallo, D.M., Goldman, W.M., Porter, R.M.: Projective structures with monodromy in PSL(2,\({\mathbb{R}})\) (to appear) Tan, S.P.: Representations of Surface Groups into PSL 2(\({\mathbb{R}})\) and Geometric Structures. Thesis, UCLA (1988) Magnus, W.: Noneuclidean Tesselations and their Groups. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], Pure and Applied Mathematics, vol. 61. New York-London (1974) Kuiper N.H. (1949). On conformally-flat spaces in the large. Ann. Math. 50(2): 916–924 Kerckhoff S.P. (1983). The Nielsen realization problem. Ann. Math. (2) 117: 235–265 Thurston, W.P.: Earthquakes in Two-dimensional Hyperbolic Geometry. Low-dimensional topology and Kleinian groups (Coventry/Durham, 1984), London Math. Soc. Lecture Note Ser., vol. 112, pp. 91–112. Cambridge Univ. Press, Cambridge (1986) Rourke, C.: Convex Ruled Surfaces, Analytical and Geometric Aspects of Hyperbolic Space (Coventry/Durham, 1984), London Math. Soc. Lecture Note Ser., vol. 111, pp. 255–272. Cambridge Univ. Press, Cambridge (1987) Sullivan, D.: Travaux de Thurston sur les groupes quasi-fuchsiens et les variétés hyperboliques de dimension 3 fibrées sur S 1, Bourbaki Seminar, Vol. 1979/80, Lecture Notes in Math., vol. 842, pp. 196–214. Springer, Berlin (1981) Margulis G.A. (1983). Free completely discontinuous groups of affine transformations. Dokl. Akad. Nauk SSSR 272(4): 785–788 Margulis, G.A.: Complete Affine Locally Flat Manifolds with a Free Fundamental Group. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), vol. 134, pp. 190–205, (1984) Automorphic functions and number theory, II Drumm T.A., Goldman W.M. (1990). Complete flat Lorentz 3-manifolds with free fundamental group. Internat. J. Math. 1(2): 149–161 Drumm T.A. (1992). Fundamental polyhedra for Margulis space-times. Topology 31(4): 677–683 Goldman W.M., Kamishima Y. (1984). The fundamental group of a compact flat Lorentz space form is virtually polycyclic. J. Differ. Geom. 19(1): 233–240 Fried D., Goldman W.M. (1983). Three-dimensional affine crystallographic groups. Adv. Math. 47(1): 1–49 Auslander L., Markus L. (1955). Holonomy of flat affinely connected manifolds. Ann. Math. 62(2): 139–151 Carrière Y., Dal’bo F. (1989). Généralisations du premier théorème de Bieberbach sur les groupes cristallographiques. Enseign. Math. (2) 35(3–4): 245–262 Tits J. (1972). Free subgroups in linear groups. J. Algebra 20: 250–270 Dixon, J.D.: The Tits Alternative. Preprint, Carleton University Brooks R. (1981). The fundamental group and the spectrum of the Laplacian. Comment. Math. Helv. 56(4): 581–598 Kulkarni R.S., Raymond F. (1985). 3-dimensional Lorentz space-forms and Seifert fiber spaces. J. Differential Geom. 21(2): 231–268 Goldman W.M. (1985). Nonstandard Lorentz space forms. J. Differential Geom. 21(2): 301–308