The rain on underground porous media Part I: Analysis of a richards model

Chinese Annals of Mathematics, Series B - Tập 34 - Trang 193-212 - 2013
Christine Bernardi1, Adel Blouza2, Linda El Alaoui3
1Laboratoire Jacques-Louis Lions, CNRS & Université Pierre et Marie Curie, BC 187, Paris Cedex 05, France
2Laboratoire de Mathématiques Raphaël Salem (UMR 6085 CNRS), Université de Rouen, Saint-Étienne-du-Rouvray, France
3Sorbonne Paris Cit, LAGA, CNRS (UMR 7539), Universit Paris 13, Villetaneuse, France

Tóm tắt

The Richards equation models the water flow in a partially saturated underground porous medium under the surface. When it rains on the surface, boundary conditions of Signorini type must be considered on this part of the boundary. The authors first study this problem which results into a variational inequality and then propose a discretization by an implicit Euler’s scheme in time and finite elements in space. The convergence of this discretization leads to the well-posedness of the problem.

Tài liệu tham khảo

Alt, H. W. and Luckhaus, S., Quasilinear elliptic-parabolic differential equations, Math. Z., 183, 1983, 311–341. Alt, H. W., Luckhaus, S. and Visintin, A., On nonstationary flow through porous media, Ann. Mat. Pura Appl., 136, 1984, 303–316. Bernardi, C., El Alaoui, L. and Mghazli, Z., A posteriori analysis of a space and time discretization of a nonlinear model for the flow in variably saturated porous media, submitted. Berninger, H., Domain decomposition methods for elliptic problems with jumping nonlinearities and application to the Richards equation, Ph. D. Thesis, Freie Universität, Berlin, Germany, 2007. Brezzi, F., Hager, W. W. and Raviart, P. A., Error estimates for the finite element solution to variational inequalities. II. Mixed methods, Numer. Math., 31, 1978/1979, 1–16. Fabrié, P. and Gallouët, T., Modelling wells in porous media flows, Math. Models Methods Appl. Sci., 10, 2000, 673–709. Gabbouhy, M., Analyse mathématique et simulation numérique des phénom`enes d’écoulement et de transport en milieux poreux non saturés. Application `a la région du Gharb, Ph. D. Thesis, University Ibn Tofail, Kénitra, Morocco, 2000. Girault, V. and Raviart, P. A., Finite Element Approximation of the Navier-Stokes Equations, Lecture Notes in Mathematics, 749, Springer-Verlag, Berlin, New York, 1979. Girault, V. and Raviart, P. A., Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms, Springer-Verlag, Berlin, 1986. Glowinski, R., Lions, J. L. and Trémolières, R., Analyse numérique des inéquations variationnelles. 2. Applications aux phénom`enes stationnaires et d’évolution, Collection “Méthodes Mathématiques de l’Informatique” 5, Dunod, Paris, 1976. Lions, J. L. and Magenes, E., Problèmes aux limites non homogènes et applications, Vol. I, Dunod, Paris, 1968. Nochetto, R. H. and Verdi, C., Approximation of degenerate parabolic problems using numerical integration, SIAM J. Numer. Anal., 25, 1988, 784–814. Radu, F., Pop, I. S. and Knabner, P., Order of convergence estimates for an Euler implicit, mixed finite element discretization of Richards’ equation, SIAM J. Numer. Anal., 42, 2004, 1452–1478. Rajagopal, K. R., On a hierarchy of approximate models for flows of incompressible fluids through porous solid, Math. Models Methods Appl. Sci., 17, 2007, 215–252. Richards, L. A., Capillary conduction of liquids through porous mediums, Physics, 1, 1931, 318–333. Schneid, E., Knabner, P. and Radu, F., A priori error estimates for a mixed finite element discretization of the Richards’ equation, Numer. Math., 98, 2004, 353–370. Sochala, P. and Ern, A., Numerical methods for subsurface flows and coupling with runoff, to appear. Sochala, P., Ern, A. and Piperno, S., Mass conservative BDF-discontinuous Galerkin/explicit finite volume schemes for coupling subsurface and overland flows, Comput. Methods Appl. Mech. Engrg., 198, 2009, 2122–2136. Woodward, C. S. and Dawson, C. N., Analysis of expanded mixed finite element methods for a nonlinear parabolic equation modeling flow into variably saturated porous media, SIAM J. Numer. Anal., 37, 2000, 701–724.