Applying genetic algorithms to selected topics commonly encountered in engineering practice
Tài liệu tham khảo
M. Axelsen, Quantitative description of the morphology and microdamage of composite materials, Ph.D. Thesis, Aalborg University, 1995
J.E. Baker, Reducing bias and inefficiency in the selection algorithm, in: J.J. Grefenstette (Ed.), Proceedings of the Second International Conference on Genetic Algorithms, 1987, pp. 13–21
Beasley, 1993, An overview of genetic algorithms: Part 1, fundamentals, University Comput., 15, 58
Goldberg, 1989
D.E. Goldberg, Sizing populations for serial and parallel genetic algorithms, in: J.D. Schaffer (Ed.), Proceedings of the Third International Conference on Genetic Algorithms, 1989, pp. 70–79
C.R. Houck, J.A. Joines, M.G. Kay, A Genetic Algorithm for Function Optimization: A Matlab implementation, North Carolina State University, available at www.fmmcenter.ncsu.edu/fac_staff/joines/papers/gaot.ps, 1995
Kvasnička, 1994, Augmented-simulated annealing adaption of feed-forward neural networks, Neural Network World, 3, 67
S.T. Mau, A refined laminated plate theory, J. Appl. Mech. (1973) 606–607
Michalewicz, 1992
Z. Michalewicz, T.D. Logan, S. Swaminathan, Evolutionary operators for continuous convex parameter spaces, in: A.V. Sebald, L.J. Fogel (Eds.), Proceedings of the Third Annual Conference on Evolutionary Programming, 1994
Povirk, 1995, Incorporation of microstructural information into model of two-phase materials, Acta Metall. Mater., 43, 3199, 10.1016/0956-7151(94)00487-3
J. Procházka, EUROCODE 2, ČSN P ENV 1992-1-1, PROCON, 1995
Ripley, 1977, Modelling spatial patterns, J. Roy. Stat. Soc. Series B, 39, 172
M. Šejnoha, K. Matouš, Nonlinear analysis of initially prestressed laminates, Acta Polytechnica, Submitted
D. Yuret, From genetic algorithms to efficient optimization, Master Thesis, Massachusetts Institute of Technology, Artificial Inteligence Laboratory, 1994
