Microbiomes other than the gut: inflammaging and age-related diseases

Aurelia Santoro1, Jiangchao Zhao2, Lu Wu3, Ciriaco Carru4, Elena Biagi5, Claudio Franceschi6
1Department of Experimental, Diagnostic and Specialty Medicine—DIMES, Alma Mater Studiorum University of Bologna, Bologna, Italy
2Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, 72703, USA
3CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
4Department of Biomedical Sciences, University Hospital (AOU) - University of Sassari, Sassari, Italy
5Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum, University of Bologna, Bologna, Italy
6Laboratory of Systems Medicine of Healthy Aging and Department of Applied Mathematics, Lobachevsky University, Nizhny Novgorod, Russia

Tóm tắt

AbstractDuring the course of evolution, bacteria have developed an intimate relationship with humans colonizing specific body sites at the interface with the body exterior and invaginations such as nose, mouth, lung, gut, vagina, genito-urinary tract, and skin and thus constituting an integrated meta-organism. The final result has been a mutual adaptation and functional integration which confers significant advantages to humans and bacteria. The immune system of the host co-evolved with the microbiota to develop complex mechanisms to recognize and destroy invading microbes, while preserving its own bacteria. Composition and diversity of the microbiota change according to development and aging and contribute to humans’ health and fitness by modulating the immune system response and inflammaging and vice versa. In the last decades, we experienced an explosion of studies on the role of gut microbiota in aging, age-related diseases, and longevity; however, less reports are present on the role of the microbiota at different body sites. In this review, we describe the key steps of the co-evolution between Homo sapiens and microbiome and how this adaptation can impact on immunosenescence and inflammaging. We briefly summarized the role of gut microbiota in aging and longevity while bringing out the involvement of the other microbiota.

Từ khóa


Tài liệu tham khảo

Franceschi C, Monti D, Barbieri D, Grassilli E, Troiano L, Salvioli S, Negro P, Capri M, Guido M, Azzi R, Sansoni P, Paganelli R, Fagiolo U, Baggio G, Donazzan S, Mariotti S, D’addato S, Gaddi A, Ortolani C, Cossarizza A (1995) Immunosenescence in humans: deterioration or remodelling? Int Rev Immunol 12:57–74. https://doi.org/10.3109/08830189509056702

Franceschi C, Cossarizza A (1995) Introduction: the reshaping of the immune system with age. Int Rev Immunol 12:1–4. https://doi.org/10.3109/08830189509056697

Franceschi C, Passeri M, De Benedictis G, Motta L (1998) Immunosenescence. Aging (Milano) 10(2):153–154

Franceschi C, Valensin S, Bonafè M, Paolisso G, Yashin AI, Monti D, de Benedictis G (2000) The network and the remodeling theories of aging: historical background and new perspectives. Exp Gerontol 35:879–896

De Martinis M, Franceschi C, Monti D, Ginaldi L (2005) Inflamm-ageing and lifelong antigenic load as major determinants of ageing rate and longevity. FEBS Lett 579:2035–2039. https://doi.org/10.1016/j.febslet.2005.02.055

Ostan R, Bucci L, Capri M, Salvioli S, Scurti M, Pini E, Monti D, Franceschi C (2008) Immunosenescence and immunogenetics of human longevity. Neuroimmunomodulation 15:224–240

Franceschi C, Bonafè M, Valensin S, Olivieri F, de Luca M, Ottaviani E, de Benedictis G (2000) Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908:244–254

Larbi A, Franceschi C, Mazzatti D, Solana R, Wikby A, Pawelec G (2008) Aging of the immune system as a prognostic factor for human longevity. Physiology 23:64–74. https://doi.org/10.1152/physiol.00040.2007

Monti D, Ostan R, Borelli V, Castellani G, Franceschi C (2017) Inflammaging and human longevity in the omics era. Mech Ageing Dev 165:129–138. https://doi.org/10.1016/j.mad.2016.12.008

Fulop T, Larbi A, Dupuis G, le Page A, Frost EH, Cohen AA, Witkowski JM, Franceschi C (2018) Immunosenescence and inflamm-aging as two sides of the same coin: friends or foes? Front Immunol 8. https://doi.org/10.3389/fimmu.2017.01960

Gerli R, Monti D, Bistoni O, Mazzone AM, Peri G, Cossarizza A, di Gioacchino M, Cesarotti ME, Doni A, Mantovani A, Franceschi C, Paganelli R (2000) Chemokines, sTNF-Rs and sCD30 serum levels in healthy aged people and centenarians. Mech Ageing Dev 121:37–46

Genedani S, Filaferro M, Carone C, Ostan R, Bucci L, Cevenini E, Franceschi C, Monti D (2008) Influence of f-MLP, ACTH(1-24) and CRH on in vitro chemotaxis of monocytes from centenarians. Neuroimmunomodulation 15:285–289

Collino S, Montoliu I, Martin F-PJ, Scherer M, Mari D, Salvioli S, Bucci L, Ostan R, Monti D, Biagi E, Brigidi P, Franceschi C, Rezzi S (2013) Metabolic signatures of extreme longevity in northern Italian centenarians reveal a complex remodeling of lipids, amino acids, and gut microbiota metabolism. PLoS One 8:e56564. https://doi.org/10.1371/journal.pone.0056564

Morrisette-Thomas V, Cohen AA, Fü lö T, et al (2014) Inflamm-aging does not simply reflect increases in pro-inflammatory markers. Mech Ageing Dev 139:49–57. https://doi.org/10.1016/j.mad.2014.06.005

Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F, Panourgia MP, Invidia L, Celani L, Scurti M, Cevenini E, Castellani GC, Salvioli S (2007) Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev 128:92–105. https://doi.org/10.1016/j.mad.2006.11.016

Grignolio A, Mishto M, Faria AMC, Garagnani P, Franceschi C, Tieri P (2014) Towards a liquid self: how time, geography, and life experiences reshape the biological identity. Front Immunol 5. https://doi.org/10.3389/fimmu.2014.00153

Franceschi C, Garagnani P, Morsiani C, Conte M, Santoro A, Grignolio A, Monti D, Capri M, Salvioli S (2018) The continuum of aging and age-related diseases: common mechanisms but different rates. Front Med 5:5. https://doi.org/10.3389/fmed.2018.00061

Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A (2018) Inflammaging: a new immune–metabolic viewpoint for age-related diseases. Nat Rev Endocrinol 14:576–590

Bischoff SC (2016) Microbiota and aging. Curr Opin Clin Nutr Metab Care 19:26–30. https://doi.org/10.1097/MCO.0000000000000242

Lakshminarayanan B, Stanton C, O’Toole PW, Ross RP (2014) Compositional dynamics of the human intestinal microbiota with aging: implications for health. J Nutr Health Aging 18:773–786. https://doi.org/10.1007/s12603-014-0549-6

Mojzsis SJ, Arrhenius G, McKeegan KD et al (1996) Evidence for life on Earth before 3,800 million years ago. Nature 384:55–59. https://doi.org/10.1038/384055a0

Greer R, Dong X, Morgun A, Shulzhenko N (2016) Investigating a holobiont: microbiota perturbations and transkingdom networks. Gut Microbes 7:126–135. https://doi.org/10.1080/19490976.2015.1128625

Ochman H, Worobey M, Kuo C-H, Ndjango JBN, Peeters M, Hahn BH, Hugenholtz P (2010) Evolutionary relationships of wild hominids recapitulated by gut microbial communities. PLoS Biol 8:e1000546. https://doi.org/10.1371/journal.pbio.1000546

El Kafsi H, Gorochov G, Larsen M (2016) Host genetics affect microbial ecosystems via host immunity. Curr Opin Allergy Clin Immunol 16:413–420. https://doi.org/10.1097/ACI.0000000000000302

Dominguez-Bello MG, Godoy-Vitorino F, Knight R, Blaser MJ (2019) Role of the microbiome in human development. Gut 68:1108–1114. https://doi.org/10.1136/gutjnl-2018-317503

Hancock AM, Alkorta-Aranburu G, Witonsky DB, Di Rienzo A (2010) Adaptations to new environments in humans: the role of subtle allele frequency shifts. Philos Trans R Soc B Biol Sci 365:2459–2468. https://doi.org/10.1098/rstb.2010.0032

Davenport ER, Sanders JG, Song SJ, Amato KR, Clark AG, Knight R (2017) The human microbiome in evolution. BMC Biol 15:1–12. https://doi.org/10.1186/s12915-017-0454-7

Rawls JF (2007) Enteric infection and inflammation alter gut microbial ecology. Cell Host Microbe 2:73–74. https://doi.org/10.1016/j.chom.2007.07.006

Jia W, Li H, Zhao L, Nicholson JK (2008) Gut microbiota: a potential new territory for drug targeting. Nat Rev Drug Discov 7:123–129. https://doi.org/10.1038/nrd2505

Neish AS (2009) Microbes in gastrointestinal health and disease. Gastroenterology 136:65–80. https://doi.org/10.1053/j.gastro.2008.10.080

Candela M, Maccaferri S, Turroni S, Carnevali P, Brigidi P (2010) Functional intestinal microbiome, new frontiers in prebiotic design. Int J Food Microbiol 140:93–101. https://doi.org/10.1016/j.ijfoodmicro.2010.04.017

Elinav E, Strowig T, Kau AL, Henao-Mejia J, Thaiss CA, Booth CJ, Peaper DR, Bertin J, Eisenbarth SC, Gordon JI, Flavell RA (2011) NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145:745–757. https://doi.org/10.1016/j.cell.2011.04.022

Kranich J, Maslowski KM, Mackay CR (2011) Commensal flora and the regulation of inflammatory and autoimmune responses. Semin Immunol 23:139–145. https://doi.org/10.1016/j.smim.2011.01.011

Sansonetti PJ, Medzhitov R (2009) Learning tolerance while fighting ignorance. Cell 138:416–420. https://doi.org/10.1016/j.cell.2009.07.024

Schroeder BO, Bäckhed F (2016) Signals from the gut microbiota to distant organs in physiology and disease. Nat Med 22:1079–1089. https://doi.org/10.1038/nm.4185

O’Toole PW, Jeffery IB (2015) Gut microbiota and aging. Science (80- ) 350:1214–1216. https://doi.org/10.1126/science.aac8469

Santoro A, Ostan R, Candela M, Biagi E, Brigidi P, Capri M, Franceschi C (2018) Gut microbiota changes in the extreme decades of human life: a focus on centenarians. Cell Mol Life Sci 75:129–148. https://doi.org/10.1007/s00018-017-2674-y

Ghosh TS, Das M, Jeffery IB, O’Toole PW (2020) Adjusting for age improves identification of gut microbiome alterations in multiple diseases. Elife 9:9d4/13/. https://doi.org/gGGCr9..MBR-BEP.0/-6443.dbROd-4/13/

Biagi E, Candela M, Franceschi C, Brigidi P (2011) The aging gut microbiota: new perspectives. Ageing Res Rev 10:428–429. https://doi.org/10.1016/j.arr.2011.03.004

Kong F, Hua Y, Zeng B, Ning R, Li Y, Zhao J (2016) Gut microbiota signatures of longevity. Curr Biol 26:R832–R833. https://doi.org/10.1016/j.cub.2016.08.015

Candela M, Biagi E, Brigidi P, O’Toole PW, de Vos WM (2014) Maintenance of a healthy trajectory of the intestinal microbiome during aging : a dietary approach. Mech Ageing Dev 136–137:70–75. https://doi.org/10.1016/j.mad.2013.12.004

Biagi E, Rampelli S, Turroni S, et al (2017) Microbiota profile

Santoro A, Ostan R, Candela M, Biagi E, Brigidi P, Capri M, Franceschi C (2017) Gut microbiota changes in the extreme decades of human life: a focus on centenarians. Cell Mol Life Sci 75:129–148. https://doi.org/10.1007/s00018-017-2674-y

Biagi E, Candela M, Fairweather-Tait S, Franceschi C, Brigidi P (2012) Aging of the human metaorganism: the microbial counterpart. Age (Dordr) 34:247–267. https://doi.org/10.1007/s11357-011-9217-5

Biagi E, Candela M, Turroni S, Garagnani P, Franceschi C, Brigidi P (2013) Ageing and gut microbes: perspectives for health maintenance and longevity. Pharmacol Res 69:11–20. https://doi.org/10.1016/j.phrs.2012.10.005

Pickard JM, Zeng MY, Caruso R, Núñez G (2017) Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev 279:70–89. https://doi.org/10.1111/imr.12567

Hippe B, Zwielehner J, Liszt K, Lassl C, Unger F, Haslberger AG (2011) Quantification of butyryl CoA:acetate CoA-transferase genes reveals different butyrate production capacity in individuals according to diet and age. FEMS Microbiol Lett 316:130–135. https://doi.org/10.1111/j.1574-6968.2010.02197.x

Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F (2016) From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165:1332–1345. https://doi.org/10.1016/j.cell.2016.05.041

Medina DA, Li T, Thomson P, Artacho A, Pérez-Brocal V, Moya A (2019) Cross-regional view of functional and taxonomic microbiota composition in obesity and post-obesity treatment shows country specific microbial contribution. Front Microbiol 10. https://doi.org/10.3389/fmicb.2019.02346

Danchin A (2018) Bacteria in the ageing gut: did the taming of fire promote a long human lifespan? Environ Microbiol 20:1966–1987. https://doi.org/10.1111/1462-2920.14255

Ghosh TS, Rampelli S, Jeffery IB, Santoro A, Neto M, Capri M, Giampieri E, Jennings A, Candela M, Turroni S, Zoetendal EG, Hermes GDA, Elodie C, Meunier N, Brugere CM, Pujos-Guillot E, Berendsen AM, de Groot LCPGM, Feskins EJM, Kaluza J, Pietruszka B, Bielak MJ, Comte B, Maijo-Ferre M, Nicoletti C, de Vos WM, Fairweather-Tait S, Cassidy A, Brigidi P, Franceschi C, O’Toole PW (2020) Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: the NU-AGE 1-year dietary intervention across five European countries. Gut 69:1–11. https://doi.org/10.1136/gutjnl-2019-319654

Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM, Cusack S, Harris HMB, Coakley M, Lakshminarayanan B, O’Sullivan O, Fitzgerald GF, Deane J, O’Connor M, Harnedy N, O’Connor K, O’Mahony D, van Sinderen D, Wallace M, Brennan L, Stanton C, Marchesi JR, Fitzgerald AP, Shanahan F, Hill C, Ross RP, O’Toole PW (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 488:178–184. https://doi.org/10.1038/nature11319

Prattichizzo F, De Nigris V, Spiga R et al (2018) Inflammageing and metaflammation: the yin and yang of type 2 diabetes. Ageing Res Rev 41:1–17. https://doi.org/10.1016/j.arr.2017.10.003

Ferrucci L, Fabbri E (2018) Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol 15:505–522. https://doi.org/10.1038/s41569-018-0064-2

Tibbs TN, Lopez LR, Arthur JC (2019) The influence of the microbiota on immune development, chronic inflammation, and cancer in the context of aging. Microb Cell 6:324–334. https://doi.org/10.15698/mic2019.08.685

Tilg H, Adolph TE, Gerner RR, Moschen AR (2018) The intestinal microbiota in colorectal cancer. Cancer Cell 33:954–964. https://doi.org/10.1016/j.ccell.2018.03.004

Rea MC, O’Sullivan O, Shanahan F et al (2012) Clostridium difficile carriage in elderly subjects and associated changes in the intestinal microbiota. J Clin Microbiol 50:867–875. https://doi.org/10.1128/JCM.05176-11

Biver E, Berenbaum F, Valdes AM, Araujo de Carvalho I, Bindels LB, Brandi ML, Calder PC, Castronovo V, Cavalier E, Cherubini A, Cooper C, Dennison E, Franceschi C, Fuggle N, Laslop A, Miossec P, Thomas T, Tuzun S, Veronese N, Vlaskovska M, Reginster JY, Rizzoli R (2019) Gut microbiota and osteoarthritis management: an expert consensus of the European society for clinical and economic aspects of osteoporosis, osteoarthritis and musculoskeletal diseases (ESCEO). Ageing Res Rev 55:100946. https://doi.org/10.1016/j.arr.2019.100946

Favazzo LJ, Hendesi H, Villani DA, Soniwala S, Dar QA, Schott EM, Gill SR, Zuscik MJ (2020) The gut microbiome-joint connection: implications in osteoarthritis. Curr Opin Rheumatol 32:92–101. https://doi.org/10.1097/BOR.0000000000000681

Szychlinska MA, Di Rosa M, Castorina A, et al (2019) A correlation between intestinal microbiota dysbiosis and osteoarthritis. Heliyon

Ticinesi A, Nouvenne A, Cerundolo N, Catania P, Prati B, Tana C, Meschi T (2019) Gut microbiota, muscle mass and function in aging: a focus on physical frailty and sarcopenia. Nutrients 11:1633. https://doi.org/10.3390/nu11071633

Boer CG, Radjabzadeh D, Medina-Gomez C, Garmaeva S, Schiphof D, Arp P, Koet T, Kurilshikov A, Fu J, Ikram MA, Bierma-Zeinstra S, Uitterlinden AG, Kraaij R, Zhernakova A, van Meurs JBJ (2019) Intestinal microbiome composition and its relation to joint pain and inflammation. Nat Commun 10:1–9. https://doi.org/10.1038/s41467-019-12873-4

Vaiserman AM, Koliada AK, Marotta F (2017) Gut microbiota: a player in aging and a target for anti-aging intervention. Ageing Res Rev 35:36–45. https://doi.org/10.1016/j.arr.2017.01.001

Costello EK, Lauber CL, Hamady M et al (2009) Bacterial community variation in human body habitats across space and time. Science (80- ) 326:1694–1697. https://doi.org/10.1126/science.1177486

García-Peña C., T. Álvarez-Cisneros RQ-B and RPF (2017) Microbiota and aging. A review and commentary. Arch Med Res 48(18):681–689

Gao L, Xu T, Huang G, Jiang S, Gu Y, Chen F (2018) Oral microbiomes: more and more importance in oral cavity and whole body. Protein Cell 9:488–500. https://doi.org/10.1007/s13238-018-0548-1

Kilian M (2018) The oral microbiome—friend or foe? Eur J Oral Sci 126(S1):5–12

Verma DPKG, AKD (2018) Insights into the human oral microbiome. Arch Microbiol 200(4):525–540

Chen, H., W., Jiang (2014) Application of high-throughput sequencing in understanding human oral microbiome related with health and disease. Front Microbiol 5:508

Moon J-H and J-HL (2016) Probing the diversity of healthy oral microbiome with bioinformatics approaches. BMB Rep 49(12):662–670

Ogawa T, Hirose Y, Honda-Ogawa M, Sugimoto M, Sasaki S, Kibi MS, Kawabata KI, YM (2018) Composition of salivary microbiota in elderly subjects. Sci Rep 8(1):414

Singh H, Torralba MG, Moncera KJ, DiLello L, Petrini J, KEN, RP (2019) Gastro-intestinal and oral microbiome signatures associated with healthy aging. GeroScience 41(6):907–921

Feres MF, Teles R, Teles L, Figueiredo C, Faveri M (2016) The subgingival periodontal microbiota of the aging mouth. Periodontol 72(1):30–53

Belibasakis GN (2018) Microbiological changes of the ageing oral cavity. Arch Oral Biol 96:230–232

Pietiäinen M, Liljestrand JM, Kopra E, Pussinen PJ (2018) Mediators between oral dysbiosis and cardiovascular diseases. Eur J Oral Sci 126:26–36. https://doi.org/10.1111/eos.12423

Bomar L, Brugger SD, Lemon KP (2018) Bacterial microbiota of the nasal passages across the span of human life. Curr Opin Microbiol 41:8–14

Koskinen K, Reichert JL, Hoier S, Schachenreiter J, Duller S, Moissl-Eichinger C, Schöpf V (2018) The nasal microbiome mirrors and potentially shapes olfactory function. Sci Rep 8:1–11. https://doi.org/10.1038/s41598-018-19438-3

Rullo J, Far PM, Quinn M, Sharma N, Bae S, Irrcher I, Sharma S (2020) Local oral and nasal microbiome diversity in age-related macular degeneration. Sci Rep 10:1–8. https://doi.org/10.1038/s41598-020-60674-3

Dickson RP, Erb-Downward JR, G., BH (2013) The role of the bacterial microbiome in lung disease. Expert Rev Respir Med 7:245–257

Erb-Downward JRDL, Thompson MK, Han CM, Freeman L, McCloskey LA, Schmidt VB, Young GB, Toews JL, Curtis B, Sundaram FJ, Martinez GBH (2011) Analysis of the lung microbiome in the “healthy” smoker and in COPD. PLoS One e16384

Morris A, Beck JM, Schloss PD, Campbell TB, Crothers K, Curtis JL, Flores SC, Fontenot AP, Ghedin E, Huang L, K, Jablonski E, Kleerup SV, Lynch E, Sodergren H, Twigg VB, Young CM, Bassis A, Venkataraman T (2013) Comparison of the respiratory microbiome in healthy nonsmokers and smokers. Am J Respir Crit Care Med 187:1067–1075

Charlson ES, Bittinger K, Haas AR, Fitzgerald AS, Frank I, Yadav A, Bushman FD, R., G. C (2011) Topographical continuity of bacterial populations in the healthy human respiratory tract. Am J Respir Crit Care Med 184:957–963

Rylance J, Kankwatira A, Nelson DE, Toh E, Day RB, Lin H, Gao X, Dong Q, Sodergren E, Weinstock GM, Heyderman RS, Twigg HL 3rd, Gordon SB (2016) Household air pollution and the lung microbiome of healthy adults in Malawi: a cross-sectional study. BMC Microbiol 16:182

Boyton RJ, Reynolds CJ, Quigley KJ, Altmann DM (2013) Immune mechanisms and the impact of the disrupted lung microbiome in chronic bacterial lung infection and bronchiectasis Clin Exp Immunol 171:

Lee SY, MaCaogain M, Fam KD, Chia KL, Ali NABM, Yap MMC, Yap EPH, Chotirmall SH, Lim CL (2019) Airway microbiome composition correlates with lung function and arterial stiffness in an age-dependent manner. PLoS One 14:e0225636

Sinha T, Vich Vila A, Garmaeva S, Jankipersadsing SA, Imhann F, Collij V, Bonder MJ, Jiang X, Gurry T, Alm EJ, D’Amato M, Weersma RK, Scherjon S, Wijmenga C, Fu J, Kurilshikov A, Zhernakova A (2019) Analysis of 1135 gut metagenomes identifies sex-specific resistome profiles. Gut Microbes 10:358–366. https://doi.org/10.1080/19490976.2018.1528822

Belkaid Y, Segre JA (2014) Dialogue between skin microbiota and immunity. Science (80- ) 346:954–959. https://doi.org/10.1126/science.1260144

Byrd AL, Belkaid Y, Segre JA (2018) The human skin microbiome. Nat Rev Microbiol 16:143–155. https://doi.org/10.1038/nrmicro.2017.157

Grice EA, Kong HH, Conlan S, et al (2009) Topographical and temporal diversity of the human skin microbiome. Science (80- ) 324:1190–1192. https://doi.org/10.1126/science.1171700

Grice EA, Segre JA (2011) The skin microbiome. Nat Rev Microbiol 9:244–253. https://doi.org/10.1038/nrmicro2537

Oh J, Byrd AL, Park M, NISC Comparative Sequencing Program, Kong HH, Segre JA (2016) Temporal stability of the human skin microbiome. Cell 165:854–866. https://doi.org/10.1016/j.cell.2016.04.008

Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC, Warner B, Reeder J, Kuczynski J, Caporaso JG, Lozupone CA, Lauber C, Clemente JC, Knights D, Knight R, Gordon JI (2012) Human gut microbiome viewed across age and geography. Nature 486:222–227. https://doi.org/10.1038/nature11053

Oh J, Conlan S, Polley EC, Segre JA, Kong HH (2012) Shifts in human skin and nares microbiota of healthy children and adults. Genome Med 4:8–12. https://doi.org/10.1186/gm378

MAKRANTONAKI E, ZOUBOULIS CC (2007) Molecular mechanisms of skin aging: state of the art. Ann N Y Acad Sci 1119:40–50. https://doi.org/10.1196/annals.1404.027

Chambers ES, Vukmanovic-Stejic M (2019) Skin barrier immunity and ageing. Immunology 10:116–125. https://doi.org/10.1111/imm.13152

Wolcott RD, Hanson JD, Rees EJ, Koenig LD, Phillips CD, Wolcott RA, Cox SB, White JS (2016) Analysis of the chronic wound microbiota of 2,963 patients by 16S rDNA pyrosequencing. Wound Repair Regen 24:163–174. https://doi.org/10.1111/wrr.12370

Ying S, Zeng D-N, Chi L, Tan Y, Galzote C, Cardona C, Lax S, Gilbert J, Quan ZX (2015) The influence of age and gender on skin-associated microbial communities in urban and rural human populations. PLoS One 10:e0141842. https://doi.org/10.1371/journal.pone.0141842

Shibagaki N, Suda W, Clavaud C, Bastien P, Takayasu L, Iioka E, Kurokawa R, Yamashita N, Hattori Y, Shindo C, Breton L, Hattori M (2017) Aging-related changes in the diversity of women’s skin microbiomes associated with oral bacteria. Sci Rep 7:10567. https://doi.org/10.1038/s41598-017-10834-9

Wu L, Zeng T, Deligios M, et al (2020) Age-related variation of bacterial and fungal communities in different body habitats across the young, elderly, and centenarians in Sardinia. mSphere 5:. https://doi.org/10.1128/mSphere.00558-19

Moissl-Eichinger C, Probst AJ, Birarda G, Auerbach A, Koskinen K, Wolf P, Holman HYN (2017) Human age and skin physiology shape diversity and abundance of Archaea on skin. Sci Rep 7:4039. https://doi.org/10.1038/s41598-017-04197-4

Tanei R, Hasegawa Y (2016) Atopic dermatitis in older adults: a viewpoint from geriatric dermatology. Geriatr Gerontol Int 16:75–86. https://doi.org/10.1111/ggi.12771

Nakatsuji T, Chen TH, Narala S et al (2017) Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci Transl Med 9:eaah4680. https://doi.org/10.1126/scitranslmed.aah4680

Williamson S, Merritt J, De Benedetto A (2020) Atopic dermatitis in the elderly. Br J Dermatol 182:e21–e21. https://doi.org/10.1111/bjd.18652

Greenbaum S, Greenbaum G, Moran-Gilad J, Weintraub AY (2019) Ecological dynamics of the vaginal microbiome in relation to health and disease. Am J Obstet Gynecol 220:324–335. https://doi.org/10.1016/j.ajog.2018.11.1089

Marrazzo JM (2006) A persistent(ly) enigmatic ecological mystery: bacterial vaginosis. J Infect Dis 193:1475–1477. https://doi.org/10.1086/503783

O’Hanlon DE, Moench TR, Cone RA (2013) Vaginal pH and microbicidal lactic acid when lactobacilli dominate the microbiota. PLoS One 8:e80074. https://doi.org/10.1371/journal.pone.0080074

Amabebe E, Anumba DOC (2018) The vaginal microenvironment: the physiologic role of lactobacilli. Front Med 5. https://doi.org/10.3389/fmed.2018.00181

Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SSK, McCulle SL, Karlebach S, Gorle R, Russell J, Tacket CO, Brotman RM, Davis CC, Ault K, Peralta L, Forney LJ (2011) Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci 108:4680–4687. https://doi.org/10.1073/pnas.1002611107

Drell T, Lillsaar T, Tummeleht L, Simm J, Aaspõllu A, Väin E, Saarma I, Salumets A, Donders GGG, Metsis M (2013) Characterization of the vaginal micro- and mycobiome in asymptomatic reproductive-age Estonian women. PLoS One 8:e54379. https://doi.org/10.1371/journal.pone.0054379

DiGiulio DB, Callahan BJ, McMurdie PJ et al (2015) Temporal and spatial variation of the human microbiota during pregnancy. Proc Natl Acad Sci 112:11060–11065. https://doi.org/10.1073/pnas.1502875112

Brown RG, Marchesi JR, Lee YS, Smith A, Lehne B, Kindinger LM, Terzidou V, Holmes E, Nicholson JK, Bennett PR, MacIntyre DA (2018) Vaginal dysbiosis increases risk of preterm fetal membrane rupture, neonatal sepsis and is exacerbated by erythromycin. BMC Med 16:9. https://doi.org/10.1186/s12916-017-0999-x

Muhleisen AL, Herbst-Kralovetz MM (2016) Menopause and the vaginal microbiome. Maturitas 91:42–50. https://doi.org/10.1016/j.maturitas.2016.05.015

Gustafsson RJ, Ahrné S, Jeppsson B, Benoni C, Olsson C, Stjernquist M, Ohlsson B (2011) The Lactobacillus flora in vagina and rectum of fertile and postmenopausal healthy Swedish women. BMC Womens Health 11:17. https://doi.org/10.1186/1472-6874-11-17

Hummelen R, Macklaim JM, Bisanz JE, Hammond JA, McMillan A, Vongsa R, Koenig D, Gloor GB, Reid G (2011) Vaginal microbiome and epithelial gene array in post-menopausal women with moderate to severe dryness. PLoS One 6:e26602. https://doi.org/10.1371/journal.pone.0026602

Zhang R, Daroczy K, Xiao B, Yu L, Chen R, Liao Q (2012) Qualitative and semiquantitative analysis of Lactobacillus species in the vaginas of healthy fertile and postmenopausal Chinese women. J Med Microbiol 61:729–739. https://doi.org/10.1099/jmm.0.038687-0

Brotman RM, Shardell MD, Gajer P, Fadrosh D, Chang K, Silver MI, Viscidi RP, Burke AE, Ravel J, Gravitt PE (2014) Association between the vaginal microbiota, menopause status, and signs of vulvovaginal atrophy. Menopause 21:450–458. https://doi.org/10.1097/GME.0b013e3182a4690b

Mitchell CM, Srinivasan S, Plantinga A, Wu MC, Reed SD, Guthrie KA, LaCroix AZ, Fiedler T, Munch M, Liu C, Hoffman NG, Blair IA, Newton K, Freeman EW, Joffe H, Cohen L, Fredricks DN (2018) Associations between improvement in genitourinary symptoms of menopause and changes in the vaginal ecosystem. Menopause 25:500–507. https://doi.org/10.1097/GME.0000000000001037

Gliniewicz K, Schneider GM, Ridenhour BJ, Williams CJ, Song Y, Farage MA, Miller K, Forney LJ (2019) Comparison of the vaginal microbiomes of premenopausal and postmenopausal women. Front Microbiol 10. https://doi.org/10.3389/fmicb.2019.00193

Minkin MJ, Reiter S, Maamari R (2015) Prevalence of postmenopausal symptoms in North America and Europe. Menopause 22:1231–1238. https://doi.org/10.1097/GME.0000000000000464

Lobo RA (2017) Hormone-replacement therapy: current thinking. Nat Rev Endocrinol 13:220–231. https://doi.org/10.1038/nrendo.2016.164

Naumova I, Castelo-Branco C (2018) Current treatment options for postmenopausal vaginal atrophy. Int J Womens Health 10:387–395. https://doi.org/10.2147/IJWH.S158913

Kim J-M, Park YJ (2017) Probiotics in the prevention and treatment of postmenopausal vaginal infections: review article. J Menopausal Med 23:139–145. https://doi.org/10.6118/jmm.2017.23.3.139

Ribeiro AE, Monteiro NES, de Moraes AVG et al (2019) Can the use of probiotics in association with isoflavone improve the symptoms of genitourinary syndrome of menopause? Results from a randomized controlled trial. Menopause 26:643–652. https://doi.org/10.1097/GME.0000000000001279

Burton JP, Cadieux PA, Reid G (2003) Improved understanding of the bacterial vaginal microbiota of women before and after probiotic instillation. Appl Environ Microbiol 69:97–101. https://doi.org/10.1128/AEM.69.1.97-101.2003

Petricevic L, Unger FM, Viernstein H, Kiss H (2008) Randomized, double-blind, placebo-controlled study of oral lactobacilli to improve the vaginal flora of postmenopausal women. Eur J Obstet Gynecol Reprod Biol 141:54–57. https://doi.org/10.1016/j.ejogrb.2008.06.003

Bisanz JE, Seney S, McMillan A, Vongsa R, Koenig D, Wong LF, Dvoracek B, Gloor GB, Sumarah M, Ford B, Herman D, Burton JP, Reid G (2014) A systems biology approach investigating the effect of probiotics on the vaginal microbiome and host responses in a double blind, placebo-controlled clinical trial of post-menopausal women. PLoS One 9:e104511. https://doi.org/10.1371/journal.pone.0104511

Thomas-White K, Forster SC, Kumar N, van Kuiken M, Putonti C, Stares MD, Hilt EE, Price TK, Wolfe AJ, Lawley TD (2018) Culturing of female bladder bacteria reveals an interconnected urogenital microbiota. Nat Commun 9:1557. https://doi.org/10.1038/s41467-018-03968-5

Pearce MM, Hilt EE, Rosenfeld AB, Zilliox MJ, Thomas-White K, Fok C, Kliethermes S, Schreckenberger PC, Brubaker L, Gai X, Wolfe AJ (2014) The female urinary microbiome: a comparison of women with and without urgency urinary incontinence. MBio 5:e01283–e01214. https://doi.org/10.1128/mBio.01283-14

Komesu YM, Richter HE, Carper B et al (2018) The urinary microbiome in women with mixed urinary incontinence compared to similarly aged controls. Int Urogynecol J 29:1785–1795. https://doi.org/10.1007/s00192-018-3683-6

Dong Q, Nelson DE, Toh E, Diao L, Gao X, Fortenberry JD, van der Pol B (2011) The microbial communities in male first catch urine are highly similar to those in paired urethral swab specimens. PLoS One 6:e19709. https://doi.org/10.1371/journal.pone.0019709

Nelson DE, Dong Q, Van der Pol B et al (2012) Bacterial communities of the coronal sulcus and distal urethra of adolescent males. PLoS One 7:e36298. https://doi.org/10.1371/journal.pone.0036298

Whiteside SA, Razvi H, Dave S, Reid G, Burton JP (2015) The microbiome of the urinary tract--a role beyond infection. Nat Rev Urol 12:81–90. https://doi.org/10.1038/nrurol.2014.361

Abelson B, Sun D, Que L, Nebel RA, Baker D, Popiel P, Amundsen CL, Chai T, Close C, DiSanto M, Fraser MO, Kielb SJ, Kuchel G, Mueller ER, Palmer MH, Parker-Autry C, Wolfe AJ, Damaser MS (2018) Sex differences in lower urinary tract biology and physiology. Biol Sex Differ 9:45. https://doi.org/10.1186/s13293-018-0204-8

Gottschick C, Deng Z-L, Vital M, Masur C, Abels C, Pieper DH, Wagner-Döbler I (2017) The urinary microbiota of men and women and its changes in women during bacterial vaginosis and antibiotic treatment. Microbiome 5:99. https://doi.org/10.1186/s40168-017-0305-3

Altmae S, Franasiak JM, Mandar R (2019) The seminal microbiome in health and disease. Nat Rev Urol 16:703–721. https://doi.org/10.1038/s41585-019-0250-y

Kermes K, Punab M, Lõivukene K, Mändar R (2003) Anaerobic seminal fluid micro-flora in chronic prostatitis/chronic pelvic pain syndrome patients. Anaerobe 9:117–123

Kline KA, Lewis AL (2016) Gram-positive uropathogens, polymicrobial urinary tract infection, and the emerging microbiota of the urinary tract. Microbiol Spectr 4. https://doi.org/10.1128/microbiolspec.UTI-0012-2012

Abernethy MG, Rosenfeld A, White JR, Mueller MG, Lewicky-Gaupp C, Kenton K (2017) Urinary microbiome and cytokine levels in women with interstitial cystitis. Obstet Gynecol 129:500–506. https://doi.org/10.1097/AOG.0000000000001892

Barr-Beare E, Saxena V, Hilt EE, Thomas-White K, Schober M, Li B, Becknell B, Hains DS, Wolfe AJ, Schwaderer AL (2015) The interaction between Enterobacteriaceae and calcium oxalate deposits. PLoS One 10:e0139575. https://doi.org/10.1371/journal.pone.0139575

Bucevic Popovic V, Situm M, Chow CT et al (2018) The urinary microbiome associated with bladder cancer. Sci Rep 8:12157. https://doi.org/10.1038/s41598-018-29054-w

Shrestha E, White JR, Yu SH, Kulac I, Ertunc O, de Marzo AM, Yegnasubramanian S, Mangold LA, Partin AW, Sfanos KS (2018) Profiling the urinary microbiome in men with positive versus negative biopsies for prostate cancer. J Urol 199:161–171. https://doi.org/10.1016/j.juro.2017.08.001

Ljungberg B, Campbell SC, Choi HY et al (2011) The epidemiology of renal cell carcinoma. Eur Urol 60:615–621. https://doi.org/10.1016/j.eururo.2011.06.049

Coyne KS, Sexton CC, Thompson CL, Milsom I, Irwin D, Kopp ZS, Chapple CR, Kaplan S, Tubaro A, Aiyer LP, Wein AJ (2009) The prevalence of lower urinary tract symptoms (LUTS) in the USA, the UK and Sweden: results from the Epidemiology of LUTS (EpiLUTS) study. BJU Int 104:352–360. https://doi.org/10.1111/j.1464-410X.2009.08427.x

Irwin DE, Milsom I, Hunskaar S, Reilly K, Kopp Z, Herschorn S, Coyne K, Kelleher C, Hampel C, Artibani W, Abrams P (2006) Population-based survey of urinary incontinence, overactive bladder, and other lower urinary tract symptoms in five countries: results of the EPIC study. Eur Urol 50:1305–1306. https://doi.org/10.1016/j.eururo.2006.09.019

Wu L, Zeng T, Zinellu A, Rubino S, Kelvin DJ, Carru C (2019) A cross-sectional study of compositional and functional profiles of gut microbiota in Sardinian Centenarians mSystems 4: 4 https://doi.org/10.1128/mSystems.00325-19

Biagi E, Franceschi C, Rampelli S, Severgnini M, Ostan R, Turroni S, Consolandi C, Quercia S, Scurti M, Monti D, Capri M, Brigidi P, Candela M (2016) Gut microbiota and extreme longevity. Curr Biol 26:1480–1485. https://doi.org/10.1016/j.cub.2016.04.016

Liu F, Ling Z, Xiao Y, Yang Q, Zheng L, Jiang P, Li L, Wang W (2017) Characterization of the urinary microbiota of elderly women and the effects of type 2 diabetes and urinary tract infections on the microbiota. Oncotarget 8:100678–100690. https://doi.org/10.18632/oncotarget.21126

Curtiss N, Balachandran A, Krska L, Peppiatt-Wildman C, Wildman S, Duckett J (2018) Age, menopausal status and the bladder microbiome. Eur J Obs Gynecol Reprod Biol 228:126–129. https://doi.org/10.1016/j.ejogrb.2018.06.011

Pearce MM, Zilliox MJ, Rosenfeld AB, Thomas-White KJ, Richter HE, Nager CW, Visco AG, Nygaard IE, Barber MD, Schaffer J, Moalli P, Sung VW, Smith AL, Rogers R, Nolen TL, Wallace D, Meikle SF, Gai X, Wolfe AJ, Brubaker L, Pelvic Floor Disorders Network (2015) The female urinary microbiome in urgency urinary incontinence. Am J Obs Gynecol 213(347):e1–e11. https://doi.org/10.1016/j.ajog.2015.07.009

Thomas-White KJ, Gao X, Lin H, Fok CS, Ghanayem K, Mueller ER, Dong Q, Brubaker L, Wolfe AJ (2018) Urinary microbes and postoperative urinary tract infection risk in urogynecologic surgical patients. Int Urogynecol J 29:1797–1805. https://doi.org/10.1007/s00192-018-3767-3

Geerlings SE (2016) Clinical presentations and epidemiology of urinary tract infections. Microbiol Spectr 4. https://doi.org/10.1128/microbiolspec.UTI-0002-2012

Lewis DA, Brown R, Williams J, White P, Jacobson SK, Marchesi JR, Drake MJ (2013) The human urinary microbiome; bacterial DNA in voided urine of asymptomatic adults. Front Cell Infect Microbiol 3:41. https://doi.org/10.3389/fcimb.2013.00041

Mandar RM, Punab P, Korrovits S, Turk K, Ausmees E, Lapp JK, Preem K, Oopkaup A, Salumets JT (2017) Seminal microbiome in men with and without prostatitis. Int J Urol 24:211–216

Costalonga M, Herzberg MC (2014) The oral microbiome and the immunobiology of periodontal disease and caries. Immunol Lett 162:22–38. https://doi.org/10.1016/j.imlet.2014.08.017

Verma D, Garg PK, Dubey AK (2018) Insights into the human oral microbiome. Arch Microbiol 200:525–540. https://doi.org/10.1007/s00203-018-1505-3

Zapata HJ, Quagliarello VJ (2015) The microbiota and microbiome in aging: potential implications in health and age-related diseases. J Am Geriatr Soc 63:776–781. https://doi.org/10.1111/jgs.13310

Kumpitsch C, Koskinen K, Schöpf V, Moissl-Eichinger C (2019) The microbiome of the upper respiratory tract in health and disease. BMC Biol 17:87. https://doi.org/10.1186/s12915-019-0703-z