Bacterial Exopolysaccharide mediated heavy metal removal: A Review on biosynthesis, mechanism and remediation strategies
Tài liệu tham khảo
Acosta, 2005, Biosorption of copper by Paenibacillus polymyxa cells and their exopolysaccharide, World J. Microbiol. Biotechnol., 21, 1157, 10.1007/s11274-005-0381-6
Aksu, 2005, Application of biosorption for the removal of organic pollutants: a review, Process Biochem., 40, 997, 10.1016/j.procbio.2004.04.008
Alluri, 2007, Biosorption: an eco-friendly alternative for heavy metal removal, Afr. J. Biotechnol., 6
Aloni, 1983, Solubilization of the UDP-glucose: 1, 4-beta-D-glucan 4-beta-D-glucosyltransferase (cellulose synthase) from Acetobacter xylinum. A comparison of regulatory properties with those of the membrane-bound form of the enzyme, J. Biol. Chem., 258, 4419, 10.1016/S0021-9258(18)32639-5
Barakat, 2011, New trends in removing heavy metals from industrial wastewater, Arab. J. Chem., 4, 361, 10.1016/j.arabjc.2010.07.019
Bhaskar, 2006, Bacterial extracellular polymeric substance (EPS): a carrier of heavy metals in the marine food-chain, Environ. Int., 32, 191, 10.1016/j.envint.2005.08.010
Boels, 2001, Sugar catabolism and its impact on the biosynthesis and engineering of exopolysaccharide production in lactic acid bacteria, Int. Dairy J., 11, 723, 10.1016/S0958-6946(01)00116-9
Chen, 2011, Synthesis and antioxidant activity of phosphorylated polysaccharide from Portulaca oleracea L. with H 3 PW 12 O 40 immobilized on polyamine functionalized polystyrene bead as catalyst, J. Mol. Catal. A Chem., 342, 74, 10.1016/j.molcata.2011.04.014
A. B Chmurny, E.J. Quintero, RKneer, (1998).Novel heavy metals sorbents produced from hyphomonas and method of use: Google Patents.
Chu, 2009, Immobilization of bioluminescent Escherichia coli ells using natural and artificial fibers treated with polyethyleneimine, Bioresour. Technol., 100, 3167, 10.1016/j.biortech.2009.01.072
Coleman, 2008, Identification and organization of genes for diutan polysaccharide synthesis from Sphingomonas sp. ATCC 53159, J. Ind. Microbiol. Biotechnol., 35, 263, 10.1007/s10295-008-0303-3
Comte, 2008, Biosorption properties of extracellular polymeric substances (EPS) towards Cd: Cu and Pb for different pH values, J. Hazard. Mater., 151, 185, 10.1016/j.jhazmat.2007.05.070
Coplin, 1990, Molecular genetics of extracellular polysaccharide biosynthesis in vascular phytopathogenic bacteria, Mol. Plant-Microbe Interact., 3, 271, 10.1094/MPMI-3-271
Czaczyk, 2007, Biosynthesis of extracellular polymeric substances (EPS) and its role in microbial biofilm formation, Pol. J. Environ. Stud., 16, 799
Das, 2008, Biosorption of heavy metals—an overview, Indian J. Biotechnol., 7, 159
Davis, 2003, A review of the biochemistry of heavy metal biosorption by brown algae, Water Res., 37, 4311, 10.1016/S0043-1354(03)00293-8
De Philippis, 2007, Heavy metal sorption by released polysaccharides and whole cultures of two exopolysaccharide-producing cyanobacteria, Biodegradation, 18, 181, 10.1007/s10532-006-9053-y
De Philippis, 2011, Exopolysaccharide-producing cyanobacteria in heavy metal removal from water: molecular basis and practical applicability of the biosorption process, Appl. Microbiol. Biotechnol., 92, 697, 10.1007/s00253-011-3601-z
De Vuyst, 1999, Heteropolysaccharides from lactic acid bacteria, FEMS Microbiol. Rev., 23, 153, 10.1111/j.1574-6976.1999.tb00395.x
D.D. Easson Jr, O.P. Peoples, A.J. Sinskey, (1990).Zoogloea transformation using exopoly saccharide non-capsule producing strains: Google Patents.
Feng, 2012, Isolation and identification of an Exopolysaccharide‐Producing lactic acid bacterium strain from chinese paocai and biosorption of Pb (II) by its exopolysaccharide, J. Food Sci., 77, T111, 10.1111/j.1750-3841.2012.02734.x
Flora, 2012, Toxicity of lead: a review with recent updates, Interdiscip. Toxicol., 5, 47, 10.2478/v10102-012-0009-2
Freire-Nordi, 2005, The metal binding capacity of Anabaena spiroides extracellular polysaccharide: an EPR study, Process Biochem., 40, 2215, 10.1016/j.procbio.2004.09.003
Freitas, 2009, Characterization of an extracellular polysaccharide produced by a Pseudomonas strain grown on glycerol, Bioresour. Technol., 100, 859, 10.1016/j.biortech.2008.07.002
Freitas, 2011, Advances in bacterial exopolysaccharides: from production to biotechnological applications, Trends Biotechnol., 29, 388, 10.1016/j.tibtech.2011.03.008
Freitas, 2011, Fucose-containing exopolysaccharide produced by the newly isolated Enterobacter strain A47 DSM 23139, Carbohydr. Polym., 83, 159, 10.1016/j.carbpol.2010.07.034
Gavrilescu, 2004, Removal of heavy metals from the environment by biosorption, Chemistry, 28, 30
Gawali Ashruta, 2014, Biosorption of heavy metals from aqueous solution using bacterial EPS, Int. J. Life Sci., 2, 373
Guibaud, 2008, Effect of pH on cadmium and lead binding by extracellular polymeric substances (EPS) extracted from environmental bacterial strains, Colloids Surf. B Biointerfaces, 63, 48, 10.1016/j.colsurfb.2007.11.002
Gutierrez, 2012, Metal binding properties of the EPS produced by Halomonas sp: TG39 and its potential in enhancing trace element bioavailability to eukaryotic phytoplankton, Biometals, 25, 1185, 10.1007/s10534-012-9581-3
Ha, 2010, Role of extracellular polymeric substances in metal ion complexation on Shewanella oneidensis: batch uptake thermodynamic modeling, ATR-FTIR, and EXAFS study, Geochim. Cosmochim. Acta, 74, 1, 10.1016/j.gca.2009.06.031
Hassiba, 2014, Study of lead adsorption from aqueous solutions on agar beads with EPS produced from Paenibacillus polymyxa, Chem. Eng. Trans., 38, 31
Iyer, 2004, Accumulation of hexavalent chromium by an exopolysaccharide producing marine Enterobacter cloaceae, Mar. Pollut. Bull., 49, 974, 10.1016/j.marpolbul.2004.06.023
Iyer, 2005, Biosorption of heavy metals by a marine bacterium, Mar. Pollut. Bull., 50, 340, 10.1016/j.marpolbul.2004.11.012
Jaishankar, 2014, Toxicity: mechanism and health effects of some heavy metals, Interdiscip. Toxicol., 7, 60, 10.2478/intox-2014-0009
Jang, 2008, Removal of lead ions in aqueous solution by hydroxyapatite/polyurethane composite foams, J. Hazard. Mater., 152, 1285, 10.1016/j.jhazmat.2007.08.003
S.C.T.M.T. JESUS, C.N.M.I. Pontes, (2008).Biosorption system produced from biofilms supported on faujasite (fau) zeolite, process obtaining it and its usage for removal of hexavalent chromium (cr (vi)): Google Patents.
Kariminiaae-Hamedaani, 2003, Wastewater treatment with bacteria immobilized onto a ceramic carrier in an aerated system, J. Biosci. Bioeng., 95, 128, 10.1016/S1389-1723(03)80117-2
Kenney, 2010
Kiliç, 2015, EPS production and bioremoval of heavy metals by mixed and pure bacterial cultures isolated from Ankara Stream, Water Sci. Technol., 72, 1488, 10.2166/wst.2015.365
Kim, 1996, Metal adsorption of the polysaccharide produced from Methylobacterium organophilum, Biotechnol. Lett., 18, 1161, 10.1007/BF00128585
Kiran, 2008, Chromium binding capacity of Lyngbya putealis exopolysaccharides, Biochem. Eng. J., 38, 47, 10.1016/j.bej.2007.06.007
Kodali, 2008, Antioxidant and free radical scavenging activities of an exopolysaccharide from a probiotic bacterium, Biotechnol. J., 3, 245, 10.1002/biot.200700208
Kralj, 2004, Glucan synthesis in the genus Lactobacillus: isolation and characterization of glucansucrase genes, enzymes and glucan products from six different strains, Microbiology, 150, 3681, 10.1099/mic.0.27321-0
Kurita, 1979, tudies on chitin. VI. Binding of metal cations, J. Appl. Polym. Sci., 23, 511, 10.1002/app.1979.070230221
Lakherwal, 2014, Adsorption of heavy metals: a review, Int. J. Environ. Res. Dev., 4, 41
Lakzian, 2008, Adsorption capability of lead: nickel and zinc byExopolysaccharide and dried cell of Ensifer meliloti, Asian J. Chem., 20, 6075
Lau, 2005, Effect of exopolysaccharides on the adsorption of metal ions by Pseudomonas sp. CU-1, Water Sci. Technol., 52, 63, 10.2166/wst.2005.0182
Liu, 2011, Preparation and antiherpetic activities of chemically modified polysaccharides from Polygonatum cyrtonema Hua, Carbohydr. Polym., 83, 737, 10.1016/j.carbpol.2010.08.044
Liu, 2001, Adsorption of heavy metals by EPS of activated sludge, Water Sci. Technol., 43, 59, 10.2166/wst.2001.0340
Madhuri, 2014, Microbial exopolysaccharides: biosynthesis and potential applications, Orient. J. Chem., 30, 1401, 10.13005/ojc/300362
Majumder, 2009, Application of response surface methodology for glucan production from euconostoc dextranicum and its structural characterization, Carbohydr. Polym., 75, 150, 10.1016/j.carbpol.2008.07.014
Malik, 2004, Metal bioremediation through growing cells, Environ. Int., 30, 261, 10.1016/j.envint.2003.08.001
Marchal, 2010, Effect of arsenite on swimming motility delays surface colonization in Herminiimonas arsenicoxydans, Microbiology, 156, 2336, 10.1099/mic.0.039313-0
Marchal, 2011, Subinhibitory arsenite concentrations lead to population dispersal in Thiomonas sp, PLoS One, 6, e23181, 10.1371/journal.pone.0023181
Martins, 2008, Application of a bacterial extracellular polymeric substance in heavy metal adsorption in a co-contaminated aqueous system, Braz. J. Microbiol., 39, 780, 10.1590/S1517-83822008000400034
McIntosh, 2005, Curdlan and other bacterial (1→3)-β-D-glucans, Appl. Microbiol. Biotechnol., 68, 163, 10.1007/s00253-005-1959-5
Mishra, 2014, Adsorption–desorption of heavy metal ions, Curr. Sci., 107, 601
Monsan, 2001, Homopolysaccharides from lactic acid bacteria, Int. Dairy J., 11, 675, 10.1016/S0958-6946(01)00113-3
Morillo, 2006, Production of a metal-binding exopolysaccharide by Paenibacillus jamilae using two-phase olive-mill waste as fermentation substrat, Curr. Microbiol., 53, 189, 10.1007/s00284-005-0438-7
Mota, 2016, Released polysaccharides (RPS) from Cyanothece sp. CCY 0110 as biosorbent for heavy metals bioremediation: interactions between metals and RPS binding sites, Appl. Microbiol. Biotechnol., 1
Muller, 2006, Herminiimonas arsenicoxydans sp. nov., a metalloresistant bacterium, Int. J. Syst. Evol. Microbiol., 56, 1765, 10.1099/ijs.0.64308-0
Muller, 2007, A tale of two oxidation states: bacterial colonization of arsenic-rich environments, PLoS Genet., 3, e53, 10.1371/journal.pgen.0030053
Nishimura, 2014, Exopolysaccharides produced from Lactobacillus delbrueckii subsp. bulgaricus, Adv. Microbiol., 4, 1017, 10.4236/aim.2014.414112
Nocelli, 2016, Roles of extracellular polysaccharides and biofilm formation in heavy metal resistance of Rhizobia, Materials, 9, 418, 10.3390/ma9060418
Norberg, 1984, Development of a continuous process for metal accumulation by Zoogloea ramigera, Biotechnol. Bioeng., 26, 265, 10.1002/bit.260260311
Norberg, 1982, Production of extracellular polysaccharide by Zoogloea ramigera, Appl. Environ. Microbiol., 44, 1231, 10.1128/AEM.44.5.1231-1237.1982
Obuekwe, 2001, Self-immobilized bacterial cultures with potential for application as ready-to-use seeds for petroleum bioremediation, Biotechnol. Lett., 23, 1025, 10.1023/A:1010544320118
Öner, 2013, Microbial production of extracellular polysaccharides from biomass
Oshima, 2008, Preparation of phosphorylated bacterial cellulose as an adsorbent for metal ions, React. Funct. Polym., 68, 376, 10.1016/j.reactfunctpolym.2007.07.046
Ozdemir, 2003, Heavy metal biosorption by biomass of Ochrobactrum anthropi producing exopolysaccharide in activated sludge, Bioresour. Technol., 90, 71, 10.1016/S0960-8524(03)00088-9
Ozdemir, 2005, Utilization in alginate beads for Cu (II) and Ni (II) adsorption of an exopolysaccharide produced by Chryseomonas luteola TEM05, World J. Microbiol. Biotechnol., 21, 163, 10.1007/s11274-004-1563-3
Ozdemir, 2005, Utilization of an exopolysaccharide produced by Chryseomonas luteola TEM05 in alginate beads for adsorption of cadmium and cobalt ions, Bioresour. Technol., 96, 1677, 10.1016/j.biortech.2004.12.031
Pal, 2008, Microbial extracellular polymeric substances: central elements in heavy metal bioremediation, Indian J. Microbiol., 48, 49, 10.1007/s12088-008-0006-5
Pérez, 2008, Biosorption of heavy metals by the exopolysaccharide produced by Paenibacillus jamilae, World J. Microbiol. Biotechnol., 24, 2699, 10.1007/s11274-008-9800-9
Quek, 2006, Rhodococcus sp: F92 immobilized on polyurethane foam shows ability to degrade various petroleum products, Bioresour. Technol., 97, 32, 10.1016/j.biortech.2005.02.031
Rajendran, 2003, Microbes in heavy metal remediation, Indian J. Exp. Biol., 41, 935
Rani, 2010, Comparative assessment of heavy metal removal by immobilized and dead bacterial cells: a biosorption approach, Afr. J. Environ. Sci. Technol., 4
Rasulov, 2013, Biosorption of metal ions by exopolysaccharide produced by Azotobacter chroococcum XU1, J. Environ. Prot., 4, 989, 10.4236/jep.2013.49114
Raungsomboon, 2006, Production: composition and Pb2+ adsorption characteristics of capsular polysaccharides extracted from a cyanobacterium Gloeocapsa gelatinosa, Water Res., 40, 3759, 10.1016/j.watres.2006.08.013
Rehm, 2009
Ruangsomboon, 2007, Lead (Pb2+) adsorption characteristics and sugar composition of capsular polysaccharides of cyanobacterium Calothrix marchica. Songklanakarin, Songklanakarin J. Sci. Technol., 29, 529
Ruas-Madiedo, 2002, An overview of the functionality of exopolysaccharides produced by lactic acid bacteria, Int. Dairy J., 12, 163, 10.1016/S0958-6946(01)00160-1
Salehizadeh, 2003, Removal of metal ions from aqueous solution by polysaccharide produced from Bacillus firmus, Water Res., 37, 4231, 10.1016/S0043-1354(03)00418-4
Samonin, 2004, A study of the adsorption of bacterial cells on porous materials, Microbiology, 73, 696, 10.1007/s11021-005-0011-1
Sarwat, 2008, Production & characterization of a unique dextran from an indigenous Leuconostoc mesenteroides CMG713, Int. J. Biol. Sci., 4, 379, 10.7150/ijbs.4.379
Sharma, 2008, Sequestration of chromium by exopolysaccharides of Nostoc and Gloeocapsa from dilute aqueous solutions, J. Hazard. Mater., 157, 315, 10.1016/j.jhazmat.2007.12.100
Sheng, 2010, Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review, Biotechnol. Adv., 28, 882, 10.1016/j.biotechadv.2010.08.001
Shi, 2011, High performance adsorbents based on hierarchically porous silica for purifying multicomponent wastewater, J. Mater. Chem., 21, 15567, 10.1039/c1jm12142a
J. R. Simpson, M. R. Tucker, (1993). Filter device: Google Patents.
Suflet, 2006, Phosphorylation of polysaccharides: new results on synthesis and characterisation of phosphorylated cellulose, React. Funct. Polym., 66, 1240, 10.1016/j.reactfunctpolym.2006.03.006
Sultan, 2012, Uptake of toxic Cr (VI) by biomass of exo-polysaccharides producing bacterial strains, Afr. J. Microbiol. Res., 6, 3329
Sutherland, 2001, Microbial polysaccharides from Gram-negative bacteria, Int. Dairy J., 11, 663, 10.1016/S0958-6946(01)00112-1
Tchounwou, 2012, 133
Ueshima, 2008, Cd adsorption onto Pseudomonas putida in the presence and absence of extracellular polymeric substances, Geochim. Cosmochim. Acta, 72, 5885, 10.1016/j.gca.2008.09.014
Vandevivere, 1993, Attachment stimulates exopolysaccharide synthesis by a bacterium, Appl. Environ. Microbiol., 59, 3280, 10.1128/AEM.59.10.3280-3286.1993
Vijayaraghavan, 2008, Bacterial biosorbents and biosorption, Biotechnol. Adv., 26, 266, 10.1016/j.biotechadv.2008.02.002
Volesky, 1990
Wang, 2006, Biosorption of heavy metals by Saccharomyces cerevisiae: a review, Biotechnol. Adv., 24, 427, 10.1016/j.biotechadv.2006.03.001
Wang, 2009, Biosorbents for heavy metals removal and their future, Biotechnol. Adv., 27, 195, 10.1016/j.biotechadv.2008.11.002
Wang, 2013, Biosorption of Pb (II) and Zn (II) by extracellular polymeric substance (Eps) of Rhizobium Radiobacter: equilibrium, kinetics and reuse studies, Arch.Environ. Prot., 39, 129, 10.2478/aep-2013-0020
Wang, 2009, On the potential of biological treatment for arsenic contaminated soils and groundwater, J. Environ. Manage., 90, 2367, 10.1016/j.jenvman.2009.02.001
Wang, 2010, Interaction between heavy metals and aerobic granular sludge, 173
Weeger, 1999, Oxidation of arsenite to arsenate by a bacterium isolated from an aquatic environment, Biometals, 12, 141, 10.1023/A:1009255012328
Whitfield, 1988, Bacterial extracellular polysaccharides, Can. J. Microbiol., 34, 415, 10.1139/m88-073
Yang, 2015, Competitive adsorption of heavy metals by extracellular polymeric substances extracted from Klebsiella sp. J1, Bioresour. Technol., 196, 533, 10.1016/j.biortech.2015.08.011
Yuan, 2005, Preparation and in vitro antioxidant activity of κ-carrageenan oligosaccharides and their oversulfated, acetylated, and phosphorylated derivatives, Carbohydr. Res., 340, 685, 10.1016/j.carres.2004.12.026