Canards in R3

Journal of Differential Equations - Tập 177 - Trang 419-453 - 2001
Peter Szmolyan1, Martin Wechselberger1
1Institut für Angewandte und Numerische Mathematik, TU-Wien, Wiedner Hauptstr. 8–10, Wien, A-1040, Austria

Tài liệu tham khảo

Abramowitz, 1964, 55 Benoit, 1981, Chasse au canard, Collect. Math., 31–32, 37 Benoit, 1983, Systèmes lents-rapides dans R3 et leurs canards, Asterisque, 109–110, 159 Benoit, 1990, Canards et enlacements, Publ. Inst. Hautes Études Sci., 72, 63, 10.1007/BF02699131 Braaksma, 1993 Brunella, 1990, Topological equivalence of a plane vector field with its principal part defined through Newton polyhedra, J. Differential Equations, 85, 338, 10.1016/0022-0396(90)90120-E Bruno, 1980 Denkowska, 1991, A method of desingularization for analytic two-dimensional vector field families, Bol. Soc. Bras. Mat., 22, 93, 10.1007/BF01244900 Diener, 1984, The canard unchained or how fast/slow dynamical problems bifurcate, Math. Intelligence, 6, 38, 10.1007/BF03024127 Diener, 1994, Regularizing microscopes and rivers, SIAM J. Appl. Math., 25, 148, 10.1137/S0036141091219377 Dumortier, 1991, Local study of planar vector fields: Singularities and their unfoldings, 2, 161 Dumortier, 1993, Techniques in the theory of local Bifurcations: Blow up, normal forms, nilpotent bifurcations, singular perturbations, 19 Dumortier, 1996, Canard cycles and center manifolds, Mem. Amer. Math. Soc., 557 Eckhaus, 1983, Relaxation oscillations including a standard chase on French ducks, 985 Fenichel, 1971, Persistence and smoothness of invariant manifolds and flows, Indiana Univ. Math. J., 21, 193, 10.1512/iumj.1972.21.21017 Fenichel, 1979, Geometric singular perturbation theory, Differential Equations, 31, 53, 10.1016/0022-0396(79)90152-9 Guckenheimer, 1983, 42 Hirsch, 1977, 583 Jones, 1995, Geometric singular perturbation theory, 1609 Krupa, 2001, Geometric analysis of the singularly perturbed planar fold, 122 Krupa, 2001, Extending geometric singular perturbation theory to nonhyperbolic points - fold and canard points in two dimensions, SIAM J. Math. Anal., 33, 286, 10.1137/S0036141099360919 Krupa, 2001, Relaxation oscillations and canard explosion, J. Differential Equations, 174, 312, 10.1006/jdeq.2000.3929 M. Krupa, and, P. Szmolyan, Extending slow manifolds near transcritical and pitchfork sungularities, Nonlinearity, in press. Milik, 2001, Multiple time scales and canards in a chemical oscillator, 122 Mishchenko, 1980 Mishchenko, 1994 Roussarie, 1993, Techniques in the theory of local bifurcations: Cyclicity and desingularization, 347 Wechselberger, 1998