Transverse instability of the line solitary water-waves

Springer Science and Business Media LLC - Tập 184 - Trang 257-388 - 2010
Frederic Rousset1, Nikolay Tzvetkov2
1IRMAR, Université de Rennes 1, Rennes Cedex, France
2UMR CNRS 8088, University of Cergy-Pontoise, Cergy-Pontoise, France

Tóm tắt

We prove the linear and nonlinear instability of the line solitary water waves with respect to transverse perturbations.

Tài liệu tham khảo

Alazard, T., Metivier, G.: Paralinearization of the Dirichlet to Neumann operator and regularity of three-dimensional water waves. Preprint (2009). arXiv:0901.2888v1 Alexander, J.C., Pego, R.L., Sachs, R.L.: On the transverse instability of solitary waves in the Kadomtsev–Petviashvili equation. Phys. Lett. A 226, 187–192 (1997) Alinhac, S.: Existence d’ondes de raréfaction pour des systèmes quasilinéaires hyperboliques multidimensionnels [Existence of rarefaction waves for multidimensional hyperbolic quasilinear systems]. Commun. Partial Differ. Equ. 14, 173–230 (1989) Alvarez-Samaniego, B., Lannes, D.: Large time existence for 3D water-waves and asymptotics. Invent. math. 171, 485–541 (2008) Ambrose, D., Masmoudi, N.: The zero surface tension limit of two-dimensional water-waves. Commun. Pure Appl. Math. 58, 1287–1315 (2005) Amick, C., Kirchgässner, K.: A theory of solitary water-waves in the presence of surface tension. Arch. Ration. Mech. Anal. 105, 1–49 (1989) Bridges, T.J.: Transverse instability of solitary-wave states of the water-wave problem. J. Fluid Mech. 439, 255–278 (2001) Buffoni, B., Dancer, E.N., Toland, J.F.: The regularity and local bifurcation of steady periodic water waves. Arch. Ration. Mech. Anal. 152, 207–240 (2000) Christodoulou, D., Lindblad, H.: On the motion of the free surface of a liquid. Commun. Pure Appl. Math. 53, 1536–1602 (2000) Constantin, A., Strauss, W.: Exact periodic traveling water-waves with vorticity. C. R. Math. Acad. Sci. Paris 335, 797–800 (2002) Coutand, D., Shkoller, S.: Well-posedness of the free-surface incompressible Euler equations with or without surface tension. J. Am. Math. Soc. 20, 829–930 (2007) Craig, W.: An existence theory for water waves and the Boussinesq and Korteweg–de Vries scaling limits. Commun. Partial Differ. Equ. 10, 787–1003 (1985) Dieudonné, J.: Calcul infinitésimal. Collection Méthodes. Hermann, Paris (1980) Fedoriuk, M.: Metod Perevala. Mir, Moscow (1977) (in Russian) Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin (1998) Grenier, E.: On the nonlinear instability of Euler and Prandtl equations. Commun. Pures Appl. Math. 53, 1067–1091 (2000) Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry II. J. Funct. Anal. 94, 308–348 (1990) Groves, M., Mielke, A.: A spatial dynamics approach to three-dimensional gravity-capillary steady water waves. Proc. R. Soc. Edinb. A 131, 83–136 (2001) Groves, M., Sun, S.M.: Fully localised solitary-wave solutions of the three-dimensional gravity-capillary water-wave problem. Arch. Ration. Mech. Anal. 188(1), 1–91 (2008) Groves, M., Haragus, M., Sun, S.M.: Transverse instability of gravity-capillary line solitary waves. C. R. Acad. Sci. Paris 333, 421–426 (2001) Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 840. Springer, Berlin (1981). iv+348 pp. ISBN: 3-540-10557-3 Iguchi, T.: A shallow water approximation for water waves. J. Math. Kyoto Univ. 49, 13–55 (2009) Iooss, G., Kirchgässner, K.: Water waves for small surface tension: an approach via normal form. Proc. R. Soc. Edinb. A 122, 267–299 (1992) Iooss, G., Plotnikov, P.: Small divisor problem in the theory of three-dimensional water gravity waves. Mem. Am. Math. Soc. 200 (2009) Lannes, D.: Well-posedness of the water-waves equations. J. Am. Math. Soc. 18, 605–654 (2005) Lindblad, H.: Well-posedness for the motion of an incompressible liquid with the free surface boundary. Ann. Math. (2) 162, 109–194 (2005) Mielke, A.: On the energetic stability of solitary water waves. Philos. Trans. R. Soc. Lond. A 360, 2337–2358 (2002) Ming, M., Zhang, Z.: Well-posedness of the water wave problem with surface tension. J. Math. Pures Appl. 92, 429–455 (2009) Mizumachi, T., Tzvetkov, N.: Stability of the line soliton of the KP-II equation under periodic transverse perturbations. Preprint (2010). http://arxiv.org/abs/1008.0812 Pego, R., Sun, S.M.: On the transverse linear instability of solitary water waves with large surface tension. Proc. R. Soc. Edinb. 134, 733–752 (2004) Pego, R., Weinstein, M.: Eigenvalues, and instabilities of solitary waves. Philos. Trans. R. Soc. Lond. A 340, 47–97 (1992) Plotnikov, P.I., Toland, J.F.: Nash Moser theory for standing water waves. Arch. Ration. Mech. Anal. 159, 1–83 (2001) Rousset, F., Tzvetkov, N.: Transverse nonlinear instability for some Hamiltonian PDE’s. J. Math. Pures Appl. 90, 550–590 (2008) Rousset, F., Tzvetkov, N.: Transverse nonlinear instability for two-dimensional dispersive models. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 26, 477–496 (2009) Schneider, G., Wayne, C.E.: The rigorous approximation of long wavelength capillariy gravity waves. Arch. Ration. Mech. Anal. 162, 247–285 (2002) Shatah, J., Zeng, C.: Geometry and a priori estimates for free boundary problems of the Euler equation. Commun. Pure Appl. Math. 61, 698–744 (2008) Taylor, M.: Partial Differential Equations II. Springer, Berlin (1997) Villarroel, J., Ablowitz, M.: In the initial value problem for the KPII equation with data that do not decay along a line. Nonlinearity 17, 1843–1866 (2004) Wu, S.: Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J. Am. Math. Soc. 12, 445–495 (1999) Zakharov, V.: Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9, 190–194 (1968) Zakharov, V.: Instability and nonlinear oscillations of solitons. JEPT Lett. 22, 172–173 (1975)