Semi-analytical modeling of cutouts in rectangular plates with variable thickness – Free vibration analysis

Applied Mathematical Modelling - Tập 40 - Trang 6983-7000 - 2016
Igor Shufrin1, Moshe Eisenberger2
1School of Mechanical and Chemical Engineering, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
2Faculty of Civil and Environmental Engineering, Technion – Israel Institute of Technology, Rabin Building, Technion City, Haifa, 32000, Israel

Tài liệu tham khảo

Rezaeepazhand, 2010, Stress concentration in metallic plates with special shaped cutout, Int. J. Mech. Sci., 52, 96, 10.1016/j.ijmecsci.2009.10.013 Barut, 2011, Stress and buckling analyses of laminates with a cutout using a {3,0}-plate theory, J. Mech. Mater. Struct., 6, 827, 10.2140/jomms.2011.6.827 Malekzadeh, 2013, Three-dimensional free vibration analysis of functionally graded cylindrical panels with cut-out using Chebyshev–Ritz method, Compos. Struct., 105, 1, 10.1016/j.compstruct.2013.05.005 Pan, 2013, Stress analysis of a finite plate with a rectangular hole subjected to uniaxial tension using modified stress functions, Int. J. Mech. Sci., 75, 265, 10.1016/j.ijmecsci.2013.06.014 Paramasivam, 1973, Free vibration of square plates with square openings, J. Sound Vib., 30, 173, 10.1016/S0022-460X(73)80111-7 Aksu, 1976, Determination of dynamic characteristics of rectangular plates with cutouts using a finite difference formulation, J. Sound Vib., 44, 147, 10.1016/0022-460X(76)90713-6 Pan, 1997, A general boundary element analysis of 2-D linear elastic fracture mechanics, Int. J. Fract., 88, 41, 10.1023/A:1007462319811 Chau, 1999, A new boundary integral formulation for plane elastic bodies containing cracks and holes, Int. J. Solids Struct., 36, 2041, 10.1016/S0020-7683(98)00078-X Wang, 2004, Static and free vibration analyses of rectangular plates by the new version of the differential quadrature element method, Int. J. Numer. Methods Eng., 59, 1207, 10.1002/nme.913 Liu, 2008, Static and free vibration analysis of laminated composite plates using the conforming radial point interpolation method, Compos. Sci. Technol., 68, 354, 10.1016/j.compscitech.2007.07.014 Hota, 2007, Vibration of plates with arbitrary shapes of cutouts, J. Sound Vib., 302, 1030, 10.1016/j.jsv.2007.01.003 Singh, 2006, Eigenvalue analysis of doubly connected plates with different configurations, J. Sound Vib., 295, 76, 10.1016/j.jsv.2005.12.044 Sabir, 1997, Natural frequencies of square plates with reinforced central holes subjected to inplane loads, Thin Walled Struct., 28, 337, 10.1016/S0263-8231(97)00051-7 Sabir, 1997, Natural frequencies of plates with square holes when subjected to in-plane uniaxial, biaxial or shear loading, Thin Walled Struct., 28, 321, 10.1016/S0263-8231(97)00050-5 Srivastava, 2004, Transverse vibration of stiffened plates with cutouts subjected to in-plane uniform edge loading at the plate boundary, Shock Vib., 11, 9, 10.1155/2004/891580 Shanmugam, 2002, Finite element modelling of plate girders with web openings, Thin Walled Struct., 40, 443, 10.1016/S0263-8231(02)00008-3 Sheikh;, 2003, Vibration of thick and thin plates using a new triangular element, J. Eng. Mech., 129, 1235, 10.1061/(ASCE)0733-9399(2003)129:11(1235) Tham, 1986, Free vibration and buckling analysis of plates by the negative stiffness method, Comput. Struct., 22, 678, 10.1016/0045-7949(86)90022-2 Ali, 1987, Prediction of natural frequencies of vibration of rectangular plates with rectangular cutouts, Comput. Struct., 12, 819, 10.1016/0045-7949(80)90019-X Laura, 1997, Transverse Vibrations of Simply supported rectangular plates with rectangular cutouts, J. Sound Vib., 202, 275, 10.1006/jsvi.1996.0703 Liew, 1995, Flexural vibration of polygonal plates: treatments of sharp re-entrant corners, J. Sound Vib., 183, 221, 10.1006/jsvi.1995.0251 Liew, 2003, Analysis of the free vibration of rectangular plates with central cut-outs using the discrete Ritz method, Int. J. Mech. Sci., 45, 941, 10.1016/S0020-7403(03)00109-7 Kwak, 2007, Free vibration analysis of rectangular plate with a hole by means of independent coordinate coupling method, J. Sound Vib., 306, 12, 10.1016/j.jsv.2007.05.041 Beslin, 1996, The use of an ‘‘ectoplasm’’ to predict free vibrations of plates with cut-outs, J. Sound Vib., 191, 935, 10.1006/jsvi.1996.0164 Sakiyama, 2003, Free vibration of orthotropic square plates with a square hole, J. Sound Vib., 259, 63, 10.1006/jsvi.2002.5181 Huang, 1999, Free vibration analysis of rectangular plates with variously-shaped holes, J. Sound Vib., 226, 769, 10.1006/jsvi.1999.2313 Cheung, 1993, Linear elastic stability analysis of shear-deformable plates using a modified spline finite strip method, Comput. Struct., 47, 189, 10.1016/0045-7949(93)90366-L Ovesy, 2012, Buckling and free vibration finite strip analysis of composite plates with cutout based on two different modeling approaches, Compos. Struct., 94, 1250, 10.1016/j.compstruct.2011.11.009 Cho, 2013, Approximate natural vibration analysis of rectangular plates with openings using assumed mode method, Int. J. Nav. Archit. Ocean Eng., 5, 478, 10.2478/IJNAOE-2013-0147 Larrondo, 2001, Vibrations of simply supported rectangular plates with varying thickness and same aspect ratio cutouts, J. Sound Vib., 244, 738, 10.1006/jsvi.2000.3492 Avalos, 2003, Transverse vibrations of simply supported rectangular plates with two rectangular cutouts, J. Sound Vib., 267, 967, 10.1016/S0022-460X(03)00217-7 Mlzusawa, 1993, Vibration of rectangular Mindlin plates with tapered thickness by the spline strip method, Comput. Struct., 46, 451, 10.1016/0045-7949(93)90215-Y Gorman, 1982 Gorman, 2012, A review of the superposition method for computing free vibration eigenvalues of elastic structures, Comput. Struct., 104-105, 27, 10.1016/j.compstruc.2012.02.018 Liew, 2001, A semi-analytical solution for vibration of rectangular plates with abrupt thickness variation, Int. J. Solids Struct., 38, 4937, 10.1016/S0020-7683(00)00329-2 Cheung, 2003, Vibration of tapered Mindlin plates in terms of static Timoshenko beam functions, J. Sound Vib., 260, 693, 10.1016/S0022-460X(02)01008-8 Eftekhari, 2013, Accurate variational approach for free vibration of variable thickness thin and thick plates with edges elastically restrained against translation and rotation, Int. J. Mech. Sci., 68, 35, 10.1016/j.ijmecsci.2012.12.012 Huang, 2005, Free vibration analysis of orthotropic rectangular plates with variable thickness and general boundary conditions, J. Sound Vib., 288, 931, 10.1016/j.jsv.2005.01.052 Eisenberger, 2000, Vibration frequencies of variable thickness plates, 645 Shufrin, 2006, Vibration of shear deformable plates with variable thickness - first-order and higher-order analyses, J. Sound Vib., 290, 465, 10.1016/j.jsv.2005.04.003 Kerr, 1969, An extended Kantorovich method for the solution of eigenvalue problems, Int. J. Solids Struct., 5, 559, 10.1016/0020-7683(69)90028-6 Shufrin, 2005, Stability and vibration of shear deformable plates-first order and higher order analyses, Int. J. Solids Struct., 42, 1225, 10.1016/j.ijsolstr.2004.06.067 Rahbar Ranji, 2010, A semi-analytical solution for forced vibrations response of rectangular orthotropic plates with various boundary conditions, J. Mech. Sci. Technol., 24, 357, 10.1007/s12206-009-1010-3 Alijani, 2008, Application of the extended Kantorovich method to the bending of clamped cylindrical panels, Eur. J. Mech. A/Solids, 27, 378, 10.1016/j.euromechsol.2007.05.011 Aghdam, 2011, Bending analysis of moderately thick functionally graded conical panels, Compos. Struct., 93, 1376, 10.1016/j.compstruct.2010.10.020 Kapuria, 2011, Extended Kantorovich method for three-dimensional elasticity solution of laminated composite structures in cylindrical bending, J. Appl. Mech., 78, 10.1115/1.4003779 Shufrin, 2008, Buckling of symmetrically laminated rectangular plates with general boundary conditions – A semi analytical approach, Compos. Struct., 82, 521, 10.1016/j.compstruct.2007.02.003 Eisenberger, 2007, The extended Kantorovich method for vibration analysis of plates, Anal. Des. Pl. Struct. Dyn., 2, 192 Bespalova, 2008, Solving stationary problems for shallow shells by a generalized Kantorovich–Vlasov method, Int. Appl. Mech., 44, 1283, 10.1007/s10778-009-0138-2 Bespalova, 2011, Determining the natural frequencies of an elastic parallelepiped by the advanced Kantorovich–Vlasov method, Int. Appl. Mech., 47, 410, 10.1007/s10778-011-0467-9 Shufrin, 2008, A semi-analytical approach for the non-linear large deflection analysis of laminated rectangular plates under general out-of-plane loading, Int. J. Nonlinear Mech., 43, 328, 10.1016/j.ijnonlinmec.2007.12.018 Shufrin, 2009, Elastic nonlinear stability analysis of thin rectangular plates through a semi-analytical approach, Int. J. Solids Struct., 46, 2075, 10.1016/j.ijsolstr.2008.06.022 Shufrin, 2010, A semi-analytical approach for the geometrically nonlinear analysis of trapezoidal plates, Int. J. Mech. Sci., 52, 1588, 10.1016/j.ijmecsci.2010.07.008 Tahani, 2012, Interlaminar stresses in thick rectangular laminated plates with arbitrary laminations and boundary conditions under transverse loads, Compos. Struct., 94, 1793, 10.1016/j.compstruct.2011.12.027 Mousavi, 2012, Analytical solution for bending of moderately thick radially functionally graded sector plates with general boundary conditions using multi-term extended Kantorovich method, Compos. Part B Eng., 43, 1405, 10.1016/j.compositesb.2011.11.068 Tahani, 2013, Analytical solution for bending problem of moderately thick composite annular sector plates with general boundary conditions and loadings using multi-term extended Kantorovich method, Arch. Appl. Mech., 83, 969, 10.1007/s00419-013-0730-0 Kapuria, 2012, Multiterm extended Kantorovich method for three-dimensional elasticity solution of laminated plates, J. Appl. Mech., 79, 10.1115/1.4006495 Kumari, 2014, Three-dimensional extended Kantorovich solution for Levy-type rectangular laminated plates with edge effects, Compos. Struct., 107, 167, 10.1016/j.compstruct.2013.07.053 Reddy, 2004 Eisenberger, 1995, Dynamic stiffness matrix for variable cross-section Timoshenko beams, Commun. Numer. Methods Eng., 11, 507, 10.1002/cnm.1640110605