Entropy and Quantum Kolmogorov Complexity: A Quantum Brudno’s Theorem
Tóm tắt
In classical information theory, entropy rate and algorithmic complexity per symbol are related by a theorem of Brudno. In this paper, we prove a quantum version of this theorem, connecting the von Neumann entropy rate and two notions of quantum Kolmogorov complexity, both based on the shortest qubit descriptions of qubit strings that, run by a universal quantum Turing machine, reproduce them as outputs.
Tài liệu tham khảo
Adleman L.M., Demarrais J., Huang M.A. (1997) Quantum Computability. SIAM J. Comput. 26, 1524–1540
Alekseev V.M., Yakobson M.V. (1981) “Symbolic Dynamics and Hyperbolic Dynamic Systems”. Phys. Rep. 75, 287
Alicki R., Narnhofer H. (1995) “Comparison of dynamical entropies for the noncommutative shifts”. Lett. Math. Phys. 33, 241–247
Bernstein E., Vazirani U. (1997) “Quantum Complexity Theory”. SIAM J. Comput. 26, 1411–1473
Berthiaume A., Van Dam W., Laplante S. (2001) “Quantum Kolmogorov complexity”. J. Comput., System Sci. 63, 201–221
Billingsley P. (1965) “Ergodic Theory and Information”. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, New York
Bjelaković I., Krüger T., Siegmund-Schultze Ra., Szkoła A. (2004) “The Shannon- McMillan theorem for ergodic quantum lattice systems”. Invent. Math. 155, 203–222
Bjelaković, I., Krüger, T., Siegmund-Schultze, Ra., Szkoła, A. “Chained Typical Subspaces- a Quantum Version of Breiman’s Theorem”. http://arxiv.org/list/quant-ph/0301177, 2003
Bjelaković I., Szkoła A. (2005) “The Data Compression Theorem for Ergodic Quantum Information Sources”. Quant. Inform. Proc. 4(1): 49–63
Brudno A.A. (1983) “Entropy and the complexity of the trajectories of a dynamical system”. Trans. Moscow Math. Soc. 2, 127–151
Chaitin G.J. (1966) “On the Length of Programs for Computing Binary Sequences”. J. Assoc. Comp. Mach. 13, 547–569
Cover T.M., Thomas J.A. (1991) “Elements of Information Theory”. Wiley Series in Telecommunications. John Wiley & Sons, New York
Deutsch D. (1985) Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A400, 97–117
Feynman R. (1982) Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488
Gács P. (2001) “Quantum algorithmic entropy”. J. Phys. A: Math. Gen. 34, 6859–6880
Gruska J. (1999) “Quantum Computing”. McGraw–Hill, London
Hiai F., Petz D. (1991) “The Proper Formula for Relative Entropy and its Asymptotics in Quantum Probability”. Commun. Math. Phys. 143, 99–114
Holevo A.S. (2001) “Statistical Structure of Quantum Theory”. Springer Lecture Notes 67, Springer, Berlin Heidelberg New York
Jozsa R., Schumacher B. (1994) “A new proof of the quantum noiseless coding theorem”. J. Mod. Optics 41, 2343–2349
Jozsa R., Horodecki M., Horodecki P., Horodecki R. (1998) “Universal Quantum Information Compression”. Phys. Rev. Lett. 81, 1714–1717
Kaltchenko A., Yang E.H. (2003) “Universal compression of ergodic quantum sources”. Quantum Information and Computation 3(4): 359–375
Keller, G. “Wahrscheinlichkeitstheorie”. Lecture Notes, Universität Erlangen-Nürnberg, 2003
Kieffer J. (1978) “A unified approach to weak universal source coding”. IEEE Trans. Inform. Theory 24(6): 674–682
Kolmogorov A.N. (1965) Three Approaches to the Quantitative Definition on Information. Prob. Inf. Trans. 1, 4–7
Kolmogorov A.N. (1968) “Logical Basis for Information Theory and Probability Theory”. IEEE Trans. Inform. Theory 14, 662–664
Li M., Vitanyi P. (1997) “An Introduction to Kolmogorov Complexity and Its Applications”. Springer Verlag, Berlin-Heidelberg-New York
Mora, C., Briegel, H.J. “Algorithmic complexity of quantum states”. http://arxiv.org/list/quant-ph/0412172, 2004
Mora, C., Briegel, H.J. “Algorithmic complexity and entanglement of quantum states”. http://arxiv.org/list/quant-ph/0505200, 2005
Nielsen M.A., Chuang I.L. (2000) “Quantum Computation and Quantum Information”. Cambridge University Press, Cambridge
Ozawa M., Nishumura H. (2000) “Local Transition Functions of Quantum Turing Machines”. Theoret. Informatics and Appl. 34, 379–402
Paulsen V. (2002) “Completely Bounded Maps and Operator Algebras”. Cambridge Studies in Advanced Mathematics 78, Cambridge Univ. Press, Cambridge
Perdrix, S., Jorrand, P. “Measurement-Based Quantum Turing Machines and their Universality”. http: arxiv.org/list/quant-ph/0404146, 2004
Petz D., Mosonyi M. (2001) “Stationary quantum source coding”. J. Math. Phys. 42, 4857–4864
Shor, P. “Algorithms for quantum computation: Discrete log and factoring”. In: Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer Society Press, 1994, pp. 124–134
Segre G. (2004) “Physical Complexity of Classical and Quantum Objects and Their Dynamical Evolution From an Information-Theoretic Viewpoint”. Int. J. Th. Phys. 43, 1371–1395
Solomonoff, R.J. “A Formal Theory of Inductive Inference”. Inform. Contr. 7, 1–22, 224–254 (1964)
Sow D.M., Eleftheriadis A. (2003) “Complexity distortion theory”. IEEE Trans. Inform. Theory IT-49, 604–608
Svozil K. (1993) “Randomness and Undecidability in Physics”. World Scientific, Singapore
Uspenskii V.A., Semenov A.L., Shen A.Kh. (1990) “Can an individual sequence of zeros and ones be random”. Usp. Mat. Nauk. 45/1, 105–162
Vitányi P. (2001) “Quantum Kolmogorov complexity based on classical descriptions”. IEEE Trans. Inform. Theory 47/6, 2464–2479
White H. (1993) “Algorithmic complexity of points in a dynamical system”. Erg. Th. Dyn. Sys. 13, 807
Ziv J. (1972) “Coding of sources with unknown statistics–I: Probability of encoding error”. IEEE Trans. Inform. Theory 18, 384–389
Zvonkin A.K., Levin L.A. (1970) “The complexity of finite objects and the development of the concepts of information and randomness by means of the theory of algorithms”. Russ. Math. Surv. 25(6): 83–124