Avoid, tolerate, or escape? Native vegetation responses to invasion vary between functional groups
Tóm tắt
Biological invasions are one of the greatest threats to biodiversity and ecosystem functioning. However, the constraints imposed by the invaders on native organisms and their associated response, remain poorly understood. Native species can survive invasion through multiple resistance strategies (avoidance, tolerance, or escape), but the relative importance of each strategy and how they vary among functional groups have been little explored. In this study, we examined the resistance strategies of native forbs and graminoids facing invasion by Solidago canadensis. First, we characterized the general impacts of invader density on native plant biomass production and diversity. Then, we investigated specific constraints linked to the invasion (competition for light, nutrients and mycorrhizal fungi), and the associated resistance strategies of native species. S. canadensis had different negative impacts on native vegetation biomass production and diversity—depending on functional groups—due to increased competition for light, nutrients, and mycorrhizal interactions. The increased competition for light was partially (1) avoided (tall forbs and graminoids) or (2) tolerated (small, shade-resistant graminoids). The effects of (3) allelopathic compounds and (4) increased competition for nutrients were avoided by some forbs (high mycorrhizal infection rates). Finally, some forbs and graminoids (5) escaped all constraints by completing their cycle early in the season. Our results highlight the diversity of non-exclusive strategies (avoidance, tolerance, escape) by which different functional groups can respond to invasion-induced constraints. They suggest that to improve understanding of the mechanisms underlying invasion, the native community responses should be decomposed into strategies specific to functional groups.
Tài liệu tham khảo
Abhilasha D, Quintana N, Vivanco J, Joshi J (2008) Do allelopathic compounds in invasive Solidago canadensis s.l. restrain the native European flora? J Ecol 96(5):993–1001. https://doi.org/10.1111/j.1365-2745.2008.01413.x
Albrecht M, Padrón B, Bartomeus I, Traveset A (2014) Consequences of plant invasions on compartmentalization and species’ roles in plant–pollinator networks. Proc R Soc B Biol Sci [Internet]. https://doi.org/10.1098/rspb.2014.0773
Bagaria G, Helm A, Rodà F, Pino J (2015) Assessing coexisting plant extinction debt and colonization credit in a grassland-forest change gradient. Oecologia 179(3):823–834. https://doi.org/10.1007/s00442-015-3377-4
Bartoń K (2020) MuMIn: multi-model inference [Internet]. https://CRAN.R-project.org/package=MuMIn. Accessed 30 Sept 2021
Bates D, Maechler M, Bolker B, Walker S, Christensen RHB, Singmann H, Dai B, Scheipl F, Grothendieck G, Green P et al (2021) lme4: linear mixed-effects models using “Eigen” and S4 [Internet]. https://CRAN.R-project.org/package=lme4. Accessed 30 Sept 2021
Blondel J (2003) Guilds or functional groups: does it matter? Oikos 100(2):223–231. https://doi.org/10.1034/j.1600-0706.2003.12152.x
Bocci G (2020) TR8: a tool for downloading functional traits data for plant species [Internet]. https://CRAN.R-project.org/package=TR8. Accessed 30 Sept 2021
Bodner G, Nakhforoosh A, Kaul H-P (2015) Management of crop water under drought: a review. Agron Sustain Dev 35(2):401–442. https://doi.org/10.1007/s13593-015-0283-4
Bowman WD, Theodose TA, Fisk MC (1995) Physiological and production responses of plant growth forms to increases in limiting resources in alpine tundra: implications for differential community response to environmental change. Oecologia 101(2):217–227. https://doi.org/10.1007/BF00317287
Bråthen KA, Hagberg O (2004) More efficient estimation of plant biomass. J Veg Sci 15(5):653–660. https://doi.org/10.1111/j.1654-1103.2004.tb02307.x
Campbell JW, Hanula JL (2007) Efficiency of Malaise traps and colored pan traps for collecting flower visiting insects from three forested ecosystems. J Insect Conserv 11(4):399–408. https://doi.org/10.1007/s10841-006-9055-4
Castro-Díez P, Pauchard A, Traveset A, Vilà M (2016) Linking the impacts of plant invasion on community functional structure and ecosystem properties. J Veg Sci 27(6):1233–1242. https://doi.org/10.1111/jvs.12429
Cavieres LA (2021) Facilitation and the invasibility of plant communities. J Ecol 109(5):2019–2028. https://doi.org/10.1111/1365-2745.13627
Climatologie de l’année 2019 à Annecy-Meythet - Infoclimat. https://www.infoclimat.fr/climatologie/annee/2019/annecy-meythet/valeurs/07494.html. Accessed 25 July 2022
Craine JM, Dybzinski R (2013) Mechanisms of plant competition for nutrients, water and light. Funct Ecol 27(4):833–840. https://doi.org/10.1111/1365-2435.12081
Cunningham SA, Summerhayes B, Westoby M (1999) Evolutionary divergences in leaf structure and chemistry, comparing rainfall and soil nutrient gradients. Ecol Monogr 69(4):569–588. https://doi.org/10.1890/0012-9615(1999)069[0569:EDILSA]2.0.CO;2
Davis ES, Kelly R, Maggs CA, Stout JC (2018) Contrasting impacts of highly invasive plant species on flower-visiting insect communities. Biodivers Conserv 27(8):2069–2085. https://doi.org/10.1007/s10531-018-1525-y
Dong L-J, Ma L-N, He W-M (2021) Arbuscular mycorrhizal fungi help explain invasion success of Solidago canadensis. Appl Soil Ecol 157:103763. https://doi.org/10.1016/j.apsoil.2020.103763
Fenesi A, Geréd J, Meiners SJ, Tóthmérész B, Török P, Ruprecht E (2015a) Does disturbance enhance the competitive effect of the invasive Solidago canadensis on the performance of two native grasses? Biol Invasions 17(11):3303–3315. https://doi.org/10.1007/s10530-015-0954-8
Fenesi A, Vágási CI, Beldean M, Földesi R, Kolcsár L-P, Shapiro JT, Török E, Kovács-Hostyánszki A (2015b) Solidago canadensis impacts on native plant and pollinator communities in different-aged old fields. Basic Appl Ecol 16(4):335–346. https://doi.org/10.1016/j.baae.2015.03.003
Fitter AH, Peat HJ (1994) The ecological flora database. J Ecol 82(2):415–425. https://doi.org/10.2307/2261309
Freschet GT, Violle C, Bourget MY, Scherer-Lorenzen M, Fort F (2018) Allocation, morphology, physiology, architecture: the multiple facets of plant above- and below-ground responses to resource stress. New Phytol 219(4):1338–1352. https://doi.org/10.1111/nph.15225
Gallien L, Carboni M (2017) The community ecology of invasive species: where are we and what’s next? Ecography 40(2):335–352. https://doi.org/10.1111/ecog.02446
Ghazoul J (2006) Floral diversity and the facilitation of pollination. J Ecol 94(2):295–304. https://doi.org/10.1111/j.1365-2745.2006.01098.x
Gioria M, Osborne BA (2014) Resource competition in plant invasions: emerging patterns and research needs. Front Plant Sci 5. https://doi.org/10.3389/fpls.2014.00501
Gordon DR (1998) Effects of invasive, non-indigenous plant species on ecosystem processes: lessons from Florida. Ecol Appl 8(4):975–989. https://doi.org/10.1890/1051-0761(1998)008[0975:EOINIP]2.0.CO;2
Grace JB, Scheiner SM, Schoolmaster DR (2015) Structural equation modeling: building and evaluating causal models. In: Fox GA, Negrete-Yankelevich S, Sosa VJ (eds) Ecological statistics: contemporary theory and application, 1st edn. Oxford University Press, Oxford, pp 168–199
Grange MC, Munoz F, Moretti M, Varona-Y-Varona S, Renaud J, Colace M-P, Gueguen M, Gallien L (2021) Designing sampling protocols for plant-pollinator interactions: timing, meteorology, flowering variations and failed captures matter. Bot Lett [Internet]. https://doi.org/10.1080/23818107.2021.1964596
de Groot M, Kleijn D, Jogan N (2007) Species groups occupying different trophic levels respond differently to the invasion of semi-natural vegetation by Solidago canadensis. Biol Conserv 136(4):612–617. https://doi.org/10.1016/j.biocon.2007.01.005
Hill MO (1973) Diversity and evenness: a unifying notation and its consequences. Ecology 54(2):427–432. https://doi.org/10.2307/1934352
Huang L, Xue W, Herben T (2019) Temporal niche differentiation among species changes with habitat productivity and light conditions. J Veg Sci 30(3):438–447. https://doi.org/10.1111/jvs.12741
Jackson ST, Sax DF (2010) Balancing biodiversity in a changing environment: extinction debt, immigration credit and species turnover. Trends Ecol Evol 25(3):153–160. https://doi.org/10.1016/j.tree.2009.10.001
Jonasson S (1988) Evaluation of the point intercept method for the estimation of plant biomass. Oikos 52(1):101–106. https://doi.org/10.2307/3565988
Jost L, DeVries P, Walla T, Greeney H, Chao A, Ricotta C (2010) Partitioning diversity for conservation analyses. Divers Distrib 16(1):65–76. https://doi.org/10.1111/j.1472-4642.2009.00626.x
Kattge J, Bönisch G, Díaz S, Lavorel S, Prentice IC, Leadley P, Tautenhahn S, Werner GDA, Aakala T, Abedi M et al (2020) TRY plant trait database: enhanced coverage and open access. Glob Change Biol 26(1):119–188. https://doi.org/10.1111/gcb.14904
Knevel I, Bekker R, Bakker J, Kleyer M (2003) Life-history traits of the Northwest European flora: the LEDA database. J Veg Sci 14(4):611–614. https://doi.org/10.1111/j.1654-1103.2003.tb02188.x
Kühn I, Durka W, Klotz S (2004) BiolFlor: a new plant-trait database as a tool for plant invasion ecology. Divers Distrib 10(5/6):363–365
Kuznetsova A, Brockhoff PB, Christensen RHB, Jensen SP (2020) lmerTest: tests in linear mixed effects models [Internet]. https://CRAN.R-project.org/package=lmerTest. Accessed 30 Sept 2021
Lefcheck JS (2016) piecewiseSEM: piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol Evol 7(5):573–579. https://doi.org/10.1111/2041-210X.12512
Levitt J (2015) Water, radiation, salt, and other stresses. Elsevier, Amsterdam
Litt AR, Cord EE, Fulbright TE, Schuster GL (2014) Effects of invasive plants on arthropods. Conserv Biol 28(6):1532–1549. https://doi.org/10.1111/cobi.12350
Maltby E, Barker T (2009) The wetlands handbook, vol 2. Wiley, Amsterdam
Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London
Mason NWH, Mouillot D, Lee WG, Wilson JB (2005) Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111(1):112–118. https://doi.org/10.1111/j.0030-1299.2005.13886.x
Moles AT, Gruber MAM, Bonser SP (2008) A new framework for predicting invasive plant species. J Ecol 96(1):13–17. https://doi.org/10.1111/j.1365-2745.2007.01332.x
Morales CL, Traveset A (2009) A meta-analysis of impacts of alien vs. native plants on pollinator visitation and reproductive success of co-flowering native plants. Ecol Lett 12(7):716–728. https://doi.org/10.1111/j.1461-0248.2009.01319.x
Moroń D, Skórka P, Lenda M (2018) Disappearing edge: the flowering period changes the distribution of insect pollinators in invasive goldenrod patches. Insect Conserv Divers [Internet]. https://doi.org/10.1111/icad.12305
Münkemüller T, Gallien L, Lavergne S, Renaud J, Roquet C, Abdulhak S, Dullinger S, Garraud L, Guisan A, Lenoir J et al (2014) Scale decisions can reverse conclusions on community assembly processes. Glob Ecol Biogeogr 23(6):620–632. https://doi.org/10.1111/geb.12137
Pakeman RJ, Quested HM (2007) Sampling plant functional traits: what proportion of the species need to be measured? Appl Veg Sci 10(1):91–96. https://doi.org/10.1111/j.1654-109X.2007.tb00507.x
Pyšek P, Jarošík V, Hulme PE, Pergl J, Hejda M, Schaffner U, Vilà M (2012) A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Glob Change Biol 18(5):1725–1737. https://doi.org/10.1111/j.1365-2486.2011.02636.x
Pyšek P, Lambdon PW, Arianoutsou M, Kühn I, Pino J, Winter M (2009) Alien vascular plants of Europe. In: Handbook of Alien species in Europe [Internet], vol 3. Springer, Dordrecht, pp 43–61. https://doi.org/10.1007/978-1-4020-8280-1_4. Accessed 13 Mar 2019
R Core Team (2020) R: a language and environment for statistical computing [Internet]. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/
Raevel V, Anthelme F, Meneses RI, Munoz F (2018) Cushion-plant protection determines guild-dependent plant strategies in high-elevation peatlands of the Cordillera Real, Bolivian Andes. Perspect Plant Ecol Evol Syst 30:103–114. https://doi.org/10.1016/j.ppees.2017.09.006
Rumpf SB, Hülber K, Wessely J, Willner W, Moser D, Gattringer A, Klonner G, Zimmermann NE, Dullinger S (2019) Extinction debts and colonization credits of non-forest plants in the European Alps. Nat Commun 10(1):4293. https://doi.org/10.1038/s41467-019-12343-x
Rusterholz H-P, Küng J, Baur B (2017) Experimental evidence for a delayed response of the above-ground vegetation and the seed bank to the invasion of an annual exotic plant in deciduous forests. Basic Appl Ecol 20:19–30. https://doi.org/10.1016/j.baae.2017.02.004
Scharfy D, Güsewell S, Gessner MO, Venterink HO (2010) Invasion of Solidago gigantea in contrasting experimental plant communities: effects on soil microbes, nutrients and plant–soil feedbacks. J Ecol 98(6):1379–1388. https://doi.org/10.1111/j.1365-2745.2010.01722.x
Sodhi DS, Livingstone SW, Carboni M, Cadotte MW (2019) Plant invasion alters trait composition and diversity across habitats. Ecol Evol 9(11):6199–6210. https://doi.org/10.1002/ece3.5130
Stefanic E, Puskadija Z, Stefanic I, Bubalo D (2003) Goldenrod: a valuable plant for beekeeping in north-eastern Croatia. Bee World 84(2):88–92. https://doi.org/10.1080/0005772X.2003.11099581
Stotz GC, Gianoli E, Cahill JF (2019) Biotic homogenization within and across eight widely distributed grasslands following invasion by Bromus inermis. Ecology 100(7):e02717. https://doi.org/10.1002/ecy.2717
Sun S-G, Montgomery BR, Li B (2013) Contrasting effects of plant invasion on pollination of two native species with similar morphologies. Biol Invasions 15(10):2165–2177. https://doi.org/10.1007/s10530-013-0440-0
Valladares F, Niinemets Ü (2008) Shade tolerance, a key plant feature of complex nature and consequences. Annu Rev Ecol Evol Syst 39(1):237–257. https://doi.org/10.1146/annurev.ecolsys.39.110707.173506
Vilà M, Espinar JL, Hejda M, Hulme PE, Jarošík V, Maron JL, Pergl J, Schaffner U, Sun Y, Pyšek P (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14(7):702–708. https://doi.org/10.1111/j.1461-0248.2011.01628.x
Volaire F (2018) A unified framework of plant adaptive strategies to drought: crossing scales and disciplines. Glob Change Biol 24(7):2929–2938. https://doi.org/10.1111/gcb.14062
Weber E (1998) The dynamics of plant invasions: a case study of three exotic goldenrod species (Solidago L.) in Europe. J Biogeogr 25(1):147–154. https://doi.org/10.1046/j.1365-2699.1998.251119.x
Weiner J (2004) Allocation, plasticity and allometry in plants. Perspect Plant Ecol Evol Syst 6(4):207–215. https://doi.org/10.1078/1433-8319-00083
Werner PA, Gross RS, Bradbury IK (1980) The biology of Canadian weeds: 45. Solidago canadensis L. Can J Plant Sci 60(4):1393–1409. https://doi.org/10.4141/cjps80-194
Wilson GW, Hartnett DC (1998) Interspecific variation in plant responses to mycorrhizal colonization in tallgrass prairie. Am J Bot 85(12):1732–1738
Yang R, Zhou G, Zan S, Guo F, Su N, Li J (2014) Arbuscular mycorrhizal fungi facilitate the invasion of Solidago canadensis L. in southeastern China. Acta Oecol 61:71–77. https://doi.org/10.1016/j.actao.2014.10.008
Yıldırım K, Kaya Z (2017) Gene regulation network behind drought escape, avoidance and tolerance strategies in black poplar (Populus nigra L.). Plant Physiol Biochem 115:183–199. https://doi.org/10.1016/j.plaphy.2017.03.020
Yuan Y, Tang J, Leng D, Hu S, Yong JWH, Chen X (2014) An invasive plant promotes its arbuscular mycorrhizal symbioses and competitiveness through its secondary metabolites: indirect evidence from activated carbon. PLoS ONE 9(5):e97163. https://doi.org/10.1371/journal.pone.0097163
Yuan Y, Wang B, Zhang S, Tang J, Tu C, Hu S, Yong JWH, Chen X (2013) Enhanced allelopathy and competitive ability of invasive plant Solidago canadensis in its introduced range. J Plant Ecol 6(3):253–263. https://doi.org/10.1093/jpe/rts033
Zhang CB, Wang J, Qian BY, Li WH (2009) Effects of the invader Solidago canadensis on soil properties. Appl Soil Ecol 43(2):163–169. https://doi.org/10.1016/j.apsoil.2009.07.001
Zhang P, Li B, Wu J, Hu S (2019) Invasive plants differentially affect soil biota through litter and rhizosphere pathways: a meta-analysis. Ecol Lett 22(1):200–210. https://doi.org/10.1111/ele.13181
Zhang Q, Yao LJ, Yang RY, Yang XY, Tang JJ, Chen X (2007) Potential allelopathic effects of an invasive species Solidago canadensis on the mycorrhizae of native plant species. Allelopathy J 20(1):71–78
Zubek S, Majewska ML, Błaszkowski J, Stefanowicz AM, Nobis M, Kapusta P (2016) Invasive plants affect arbuscular mycorrhizal fungi abundance and species richness as well as the performance of native plants grown in invaded soils. Biol Fertil Soils 52(6):879–893. https://doi.org/10.1007/s00374-016-1127-3