A procedure to construct exact solutions of nonlinear evolution equations
Tóm tắt
In this paper, we implemented the functional variable method for the exact solutions of the Zakharov–Kuznetsov-modified equal-width (ZK-MEW), the modified Benjamin–Bona–Mahony (mBBM) and the modified KdV–Kadomtsev–Petviashvili (KdV–KP) equations. By using this scheme, we found some exact solutions of the above-mentioned equations. The obtained solutions include solitary wave solutions, periodic wave solutions and combined formal solutions. The functional variable method presents a wider applicability for handling nonlinear wave equations.
Tài liệu tham khảo
M J Ablowitz and P A Clarkson, Solitons, nonlinear ev olution equations and inv erse scattering transform (Cambridge University Press, Cambridge, 1990)
V O Vakhnenko, E J Parkes and A J Morrison, Chaos, Solitons and Fractals 17(4), 683 (2003)
R Hirota, Direct method of finding exact solutions of nonlinear evolution equations, in: Backlund transformations edited by R Bullough and P Caudrey (Springer, Berlin, 1980), p. 1157
W Malfliet and W Hereman, Phys. Scr. 54, 563 (1996)
A M Wazwaz, Int. J. Comput. Math. 82(2), 235 (2005)
E Fan, Appl. Math.: (A Journal of Chinese Univ ersities) 16(2), 149 (2001)
Sirendaoreji, Appl. Math.: (A Journal of Chinese Universities) 19(2), 178 (2004)
A M Wazwaz, Math. Comput. Model. 40, 499 (2004)
E Yusufoglu and A Bekir, Int. J. Comput. Math. 83(12), 915 (2006)
J H He, Chaos, Solitons and Fractals 30, 700 (2006)
A Bekir and A Boz, Phys. Lett. A372(10), 1619 (2008)
T Ozis and I Aslan, Phys. Lett. A372(47), 7011 (2008)
S Zhang, W Wang and J-L Tong, Z. Naturforsch. 63a, 663 (2008)
M L Wang, X Li and J Zhang, Phys. Lett. A372(4), 417 (2008)
S Zhang, J-L Tong and W Wang, Phys. Lett. A372, 2254 (2008)
A Bekir, Phys. Lett. A372(19), 3400 (2008)
A Zerarka, S Ouamane and A Attaf, Appl. Math. Comput. 217(7), 2897 (2010)
A Zerarka and S Ouamane, World J. Model. Simulat. 6(2), 150 (2010)
A Zerarka, S Ouamane and A Attaf, Wav es in Random and Complex Media 21(1), 44 (2011)
A Bekir and E Akın, J. Adv . Res. Sci. Comput. 3(1), 35 (2011)
R T Benjamin, J L Bona and J J Mahony, Philos. Trans. R. Soc. London 272, 47 (1972)
T Tso, Chin. J. Math. 24, 327 (1996)
E Yusufoglu and A Bekir, Chaos, Solitons and Fractals 38, 1126 (2008)
E Yusufoglu, Phys. Lett. A372, 442 (2008)
O P Layeni and A P Akinola, Commun. Nonlin. Sci. Numer. Simulat. 15, 135 (2010)
S Abbasbandy and A Shirzadi, Commun. Nonlin. Sci. Numer. Simulat. 15, 1759 (2010)
J A Pava, C Banquet and M Scialom, Discrete Contin. Dyn. Syst. - Ser. A30(3), 851 (2011)
A M Wazwaz, Appl. Math. Comput. 204, 162 (2008)
N Taghizadeh, M Mirzazadeh and F Farahrooz, Appl. Math. Model. 35, 3991 (2011)
C M Khalique and K R Adem, Math. Comput. Model. 54, 184 (2011)
A M Wazwaz, Int. J. Comput. Math. 82(6), 699 (2005)
F Tascan, A Bekir and M Koparan, Commun. Nonlin. Sci. Numer. Simul. 14(5), 1810 (2009)
E A Kuznetsov and F Dias, Phys. Rep. 507, 43 (2011)
T S Raju, C N Kumar and P K Panigrahi, J. Phys. A: Math. Gen. 38, L271 (2005)