A procedure to construct exact solutions of nonlinear evolution equations

Springer Science and Business Media LLC - Tập 79 - Trang 337-344 - 2012
Adem Cengiz Çevikel1, Ahmet Bekir2, Mutlu Akar3, Sait San2
1Yildiz Technical University, Faculty of Education, Department of Mathematics Education, Davutpasa Campus, Istanbul, Turkey
2Eskisehir Osmangazi University, Faculty of Arts and Sciences, Mathematics and Computer Science Department, Eskisehir, Turkey
3Yildiz Technical University, Faculty of Arts and Sciences, Mathematics Department, Davutpasa Campus, Istanbul, Turkey

Tóm tắt

In this paper, we implemented the functional variable method for the exact solutions of the Zakharov–Kuznetsov-modified equal-width (ZK-MEW), the modified Benjamin–Bona–Mahony (mBBM) and the modified KdV–Kadomtsev–Petviashvili (KdV–KP) equations. By using this scheme, we found some exact solutions of the above-mentioned equations. The obtained solutions include solitary wave solutions, periodic wave solutions and combined formal solutions. The functional variable method presents a wider applicability for handling nonlinear wave equations.

Tài liệu tham khảo

M J Ablowitz and P A Clarkson, Solitons, nonlinear ev olution equations and inv erse scattering transform (Cambridge University Press, Cambridge, 1990) V O Vakhnenko, E J Parkes and A J Morrison, Chaos, Solitons and Fractals 17(4), 683 (2003) R Hirota, Direct method of finding exact solutions of nonlinear evolution equations, in: Backlund transformations edited by R Bullough and P Caudrey (Springer, Berlin, 1980), p. 1157 W Malfliet and W Hereman, Phys. Scr. 54, 563 (1996) A M Wazwaz, Int. J. Comput. Math. 82(2), 235 (2005) E Fan, Appl. Math.: (A Journal of Chinese Univ ersities) 16(2), 149 (2001) Sirendaoreji, Appl. Math.: (A Journal of Chinese Universities) 19(2), 178 (2004) A M Wazwaz, Math. Comput. Model. 40, 499 (2004) E Yusufoglu and A Bekir, Int. J. Comput. Math. 83(12), 915 (2006) J H He, Chaos, Solitons and Fractals 30, 700 (2006) A Bekir and A Boz, Phys. Lett. A372(10), 1619 (2008) T Ozis and I Aslan, Phys. Lett. A372(47), 7011 (2008) S Zhang, W Wang and J-L Tong, Z. Naturforsch. 63a, 663 (2008) M L Wang, X Li and J Zhang, Phys. Lett. A372(4), 417 (2008) S Zhang, J-L Tong and W Wang, Phys. Lett. A372, 2254 (2008) A Bekir, Phys. Lett. A372(19), 3400 (2008) A Zerarka, S Ouamane and A Attaf, Appl. Math. Comput. 217(7), 2897 (2010) A Zerarka and S Ouamane, World J. Model. Simulat. 6(2), 150 (2010) A Zerarka, S Ouamane and A Attaf, Wav es in Random and Complex Media 21(1), 44 (2011) A Bekir and E Akın, J. Adv . Res. Sci. Comput. 3(1), 35 (2011) R T Benjamin, J L Bona and J J Mahony, Philos. Trans. R. Soc. London 272, 47 (1972) T Tso, Chin. J. Math. 24, 327 (1996) E Yusufoglu and A Bekir, Chaos, Solitons and Fractals 38, 1126 (2008) E Yusufoglu, Phys. Lett. A372, 442 (2008) O P Layeni and A P Akinola, Commun. Nonlin. Sci. Numer. Simulat. 15, 135 (2010) S Abbasbandy and A Shirzadi, Commun. Nonlin. Sci. Numer. Simulat. 15, 1759 (2010) J A Pava, C Banquet and M Scialom, Discrete Contin. Dyn. Syst. - Ser. A30(3), 851 (2011) A M Wazwaz, Appl. Math. Comput. 204, 162 (2008) N Taghizadeh, M Mirzazadeh and F Farahrooz, Appl. Math. Model. 35, 3991 (2011) C M Khalique and K R Adem, Math. Comput. Model. 54, 184 (2011) A M Wazwaz, Int. J. Comput. Math. 82(6), 699 (2005) F Tascan, A Bekir and M Koparan, Commun. Nonlin. Sci. Numer. Simul. 14(5), 1810 (2009) E A Kuznetsov and F Dias, Phys. Rep. 507, 43 (2011) T S Raju, C N Kumar and P K Panigrahi, J. Phys. A: Math. Gen. 38, L271 (2005)