Thienylmethylene Oxindole Based Conjugated Polymers via Direct Arylation Polymerization and Their Electrochromic Properties
Tóm tắt
Direct arylation methods have been used to polymerize thienylmethylene oxindoles (TEIs) and 3,3-bis[[(2-ethylhexyl)oxy]methyl]-3,4-dihydro-2H-thieno-[3,4-b][1,4]dioxepin (ProDOT) for new donor-acceptor conjugated polymers. The polymers exhibited blue hues in neutral-state with distinct color-to-transmissive reversible electrochromic switching under applied potentials from 0 V to +1.5 V, and showed high coloration efficiencies (436–438 cm2·C−1) in near-infrared regions with high switching speeds around 1–2 s under ambient conditions.
Tài liệu tham khảo
Zaumseil, J.; Sirringhaus, H. Electron and ambipolar transport in organic field-effect transistors. Chem. Rev. 2007, 107, 1296–1323.
Li, P.; Xu, L.; Shen, H.; Duan, X.; Zhang, J.; Wei, Z.; Yi, Z.; Di, C. A.; Wang, S. D-A1-D-A2 copolymer based on pyridine-capped diketopyrrolopyrrole with fluorinated benzothiadiazole for high-performance ambipolar organic thin-film transistors. ACS Appl. Mater. Interfaces 2016, 8, 8620–8626.
Wang, C.; Dong, H.; Hu, W.; Liu, Y.; Zhu, D. Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chem. Rev. 2012, 112, 2208–2267.
Lee, C.; Lee, S.; Kim, G. U.; Lee, W.; Kim, B. J. Recent advances, design guidelines, and prospects of all-polymer solar cells. Chem. Rev. 2019, 119, 8028–8086.
Zhang, J.; Kan, B.; Pearson, A. J.; Parnell, A. J.; Cooper, J. F. K.; Liu, X. K.; Conaghan, P. J.; Hopper, T. R.; Wu, Y.; Wan, X.; Gao, F.; Greenham, N. C.; Bakulin, A. A.; Chen, Y.; Friend, R. H. Efficient non-fullerene organic solar cells employing sequentially deposited donor-acceptor layers. J. Mater. Chem. A 2018, 6, 18225–18233.
Günes, S.; Neugebauer, H.; Sariciftci, N. S. Conjugated polymer-based organic solar cells. Chem. Rev. 2007, 107, 1324–1338.
Beaujuge, P. M.; Reynolds, J. R. Color control in π-conjugated organic polymers for use in electrochromic devices. Chem. Rev. 2010, 110, 268–320.
Thomas, C. A.; Zong, K.; Abboud, K. A.; Steel, P. J.; Reynolds, J. R. Donor-mediated band gap reduction in a homologous series of conjugated polymers. J. Am. Chem. Soc. 2004, 126, 16440–16450.
Amb, C. M.; Dyer, A. L.; Reynolds, J. R. Navigating the color palette of solution-processable electrochromic polymers. Chem. Mater. 2011, 23, 397–415.
Collier, G. S.; Reynolds, J. R. Exploring the utility of buchwald ligands for C-H oxidative direct arylation polymerizations. ACS Macro Lett. 2019, 8, 931–936.
Teran, N. B.; Reynolds, J. R. Discrete donor-acceptor conjugated systems in neutral and oxidized states: implications toward molecular design for high contrast electrochromics. Chem. Mater. 2017, 29, 1290–1301.
Hacioglu, S. O. Copolymerization of azobenzene-bearing monomer and 3,4-ethylenedioxythiophene (EDOT): improved electrochemical performance for electrochromic device applications. Chinese J. Polym. Sci. 2020, 38, 109–117.
Xu, Z.; Kong, L. Q.; Zhao, J. S.; Fan, W. Y. Deyyloxyphenyl-substituted quinoxaline-embedded conjugated electrochromic polymers with high switching stability and fast response speed. Chinese J. Polym. Sci. 2016, 34, 407–419.
You, L.; He, J.; Mei, J. Tunable green electrochromic polymers via direct arylation polymerization. Polym. Chem. 2018, 9, 5262–5267.
Cai, W. A.; Cai, J. W.; Niu, H. J.; Xiao, T. D.; Bai, X. D.; Wang, C.; Zhang, Y. H.; Wang, W. Synthesis and electrochromic properties of polyimides with pendent benzimidazole and triphenylamine units. Chinese J. Polym. Sci. 2016, 34, 1091–1102.
Park, G. E.; Shin, J.; Lee, D. H.; Lee, T. W.; Shim, H.; Cho, M. J.; Pyo, S.; Choi, D. H. Acene-containing donor-acceptor conjugated polymers: correlation between the structure of donor moiety, charge carrier mobility, and charge transport dynamics in electronic devices. Macromolecules 2014, 47, 3747–3754.
Kini, G. P.; Oh, S.; Abbas, Z.; Rasool, S.; Jahandar, M.; Song, C. E.; Lee, S. K.; Shin, W. S.; So, W. W.; Lee, J. C. Effects on photovoltaic performance of dialkyloxy-benzothiadiazole copolymers by varying the thienoacene donor. ACS Appl. Mater. Interfaces 2017, 9, 12617–12628.
Facchetti, A.; Vaccaro, L.; Marrocchi, A. Semiconducting polymers prepared by direct arylation polycondensation. Angew. Chem. Int. Ed. 2012, 51, 3520–3523.
Pouliot, J. R.; Grenier, F.; Blaskovits, J. T.; Beaupré, S.; Leclerc, M. Direct (hetero)arylation polymerization: simplicity for conjugated polymer synthesis. Chem. Rev. 2016, 116, 14225–14274.
Yang, Y.; Lan, J.; You, J. Oxidative C-H/C-H coupling reactions between two (hetero)arenes. Chem. Rev. 2017, 117, 8787–8863.
Blaskovits, J. T.; Leclerc, M. C-H activation as a shortcut to conjugated polymer synthesis. Macromol. Rapid Commun. 2019, 40, 1800512.
Monk, P. M. S.; Mortimer, R. J.; Rosseinsky, D. R. Electrochromism: fundamentals and applications. Wiley, 2008, p. 3.
Michaelis, A.; Berneth, H.; Haarer, D.; Kostromine, S.; Neigl, R.; Schmidt, R. Electrochromic dye system for smart window applications. Adv. Mater. 2001, 13, 1825–1828.
Stalder, R.; Mei, J.; Graham, K. R.; Estrada, L. A.; Reynolds, J. R. Isoindigo, a versatile electron-deficient unit For highperformance organic electronics. Chem. Mater. 2014, 26, 664–678.
Liu, J.; Li, L.; Xu, R.; Zhang, K.; Ouyang, M.; Li, W.; Lv, X.; Zhang, C. Design, synthesis, and properties of donor-acceptor-donor’ asymmetric structured electrochromic polymers based on fluorenone as acceptor units. ACS Appl. Polym. Mater. 2019, 1, 1081–1087.
Wang, E.; Mammo, W.; Andersson, M. R. 25th Anniversary article: Isoindigo-based polymers and small molecules for bulk heterojunction solar cells and field effect transistors. Adv. Mater. 2014, 26, 1801–1826.
Lei, T.; Cao, Y.; Fan, Y.; Liu, C. J.; Yuan, S. C.; Pei, J. Highperformance air-stable organic field-effect transistors: isoindigo-based conjugated polymers. J. Am. Chem. Soc. 2011, 133, 6099–6101.
Randell, N. M.; Radford, C. L.; Yang, J.; Quinn, J.; Hou, D.; Li, Y.; Kelly, T. L. Effect of acceptor unit length and planarity on the optoelectronic properties of isoindigo-thiophene donor-acceptor polymers. Chem. Mater. 2018, 30, 4864–4873.
Lu, C.; Chen, H. C.; Chuang, W. T.; Hsu, Y. H.; Chen, W. C.; Chou, P. T. Interplay of molecular orientation, film formation, and optoelectronic properties on isoindigo- and thienoisoindigo-based copolymers for organic field effect transistor and organic photovoltaic applications. Chem. Mater. 2015, 27, 6837–6847.
Wu, J.; Chen, J.; Huang, H.; Li, S.; Wu, H.; Hu, C.; Tang, J.; Zhang, Q. (ZMThienylmethylene)oxindole-based polymers for high-performance solar cells. Macromolecules 2016, 49, 2145–2152.
Zhao, D.; Zheng, J.; Tang, J.; Zhang, Q. Cyano substituted (Z)-(thienylmethylene)-2-indolone as a new building block for near-IR absorbing polymers. Dyes Pigments 2018, 154, 107–112.
Xie, H.; Wang, M.; Kong, L.; Zhang, Y.; Ju, X.; Zhao, J. The optimization of donor-to-acceptor feed ratios with the aim of obtaining black-to-transmissive switching polymers based on isoindigo as the electron-deficient moiety. RSC Adv. 2017, 7, 11840–11851.
Gustafsson-Carlberg, J. C.; Inganäs, O.; Andersson, M. R.; Booth, C.; Azens, A.; Granqvist, C. G. Tuning the bandgap for polymeric smart windows and displays. Electrochim. Acta 1995, 40, 2233–2235.
Reeves, B. D.; Grenier, C. R. G.; Argun, A. A.; Cirpan, A.; McCarley, T. D.; Reynolds, J. R. Spray coatable electrochromic dioxythiophene polymers with high coloration efficiencies. Macromolecules 2004, 37, 7559–7569.
Dyer, A. L.; Thompson, E. J.; Reynolds, J. R. Completing the color palette with spray-processable polymer electrochromics. ACS Appl. Mater. Interfaces 2011, 3, 1787–95.
Neo, W. T.; Ye, Q.; Chua, S. J.; Xu, J. Conjugated polymer-based electrochromics: materials, device fabrication and application prospects. J. Mater. Chem. C 2016, 4, 7364–7376.
Gu, H.; Ming, S.; Lin, K.; Chen, S.; Liu, X.; Lu, B.; Xu, J. Isoindigo as an electron-deficient unit for high-performance polymeric electrochromics. Electrochim. Acta 2018, 260, 772–782.