Metabolic stages, mitochondria and calcium in hypoxic/ischemic brain damage
Tài liệu tham khảo
I.A. Silver, M. Erecinska, Oxygen and ion concentrations in normoxic and hypoxic brain cells, in: A.G. Hudetz, D.F. Brulye (Eds.), Oxygen Transport to Tissue XX, New York, Plenum Press, 1998, pp. 7–15.
Erecinska, 1989, ATP and brain function, J. Cereb. Blood Flow Metab., 9, 2, 10.1038/jcbfm.1989.2
Ljunggren, 1974, Cerebral metabolic state following complete compression ischemia, Brain Res., 73, 291, 10.1016/0006-8993(74)91050-6
Duffy, 2003, Cerebral carbohydrate metabolism during acute hypoxia and recovery, J. Neurochem., 19, 959, 10.1111/j.1471-4159.1972.tb01417.x
Folbergrova, 1990, Phosphorylase alpha and labile metabolites during anoxia: correlation to membrane fluxes of K+ and Ca2+, J. Neurochem., 55, 1690, 10.1111/j.1471-4159.1990.tb04957.x
Ekholm, 1992, Perturbation of cellular energy state in complete ischemia: relationship to dissipative ion fluxes, Exp. Brain. Res., 90, 47, 10.1007/BF00229255
Passanneau, 1964, The role of phosphofructokinase in metabolic regulation, Adv. Enzym. Regul., 2, 265, 10.1016/S0065-2571(64)80018-2
B.K. Siesjo, Brain Energy Metabolism, John Wiley & Sons, New York, 1978.
Erecinska, 1995, The effect of pH on glycolysis and phosphofructokinase activity in cultured cells and synaptosomes, J. Neurochem., 65, 2765, 10.1046/j.1471-4159.1995.65062765.x
Erecinska, 1994, Ions and energy in mammalian brain, Prog. Neurobiol., 43, 37, 10.1016/0301-0082(94)90015-9
Nicholson, 1980, Dynamics of the brain cell microenvironment, Neurosci. Res. Program Bull., 18, 175
Hansen, 1985, Effect of anoxia on ion distribution in the brain, Physiol. Rev., 65, 101, 10.1152/physrev.1985.65.1.101
Kristián, 1998, Calcium in ischemic cell death, Stroke, 29, 705, 10.1161/01.STR.29.3.705
Lowry, 2003, Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain, J. Biol. Chem., 239, 18, 10.1016/S0021-9258(18)51740-3
Nilsson, 1975, Rate of energy utilization in the cerebral cortex of rats, Acta Physiol. Scand., 93, 569, 10.1111/j.1748-1716.1975.tb05852.x
Harris, 1984, Extracellular pH, potassium, and calcium activities in progressive ischaemia of rat cortex, J. Cereb. Blood Flow Metab., 4, 178, 10.1038/jcbfm.1984.26
Kristián, 1994, The influence of pH on cellular calcium influx during ischemia, Brain Res., 641, 295, 10.1016/0006-8993(94)90158-9
Mutch, 1984, Extracellular pH changes during spreading depression and cerebral ischemia: mechanisms of brain pH regulation, J. Cereb. Blood Flow Metab., 4, 17, 10.1038/jcbfm.1984.3
Smith, 1986, Changes in extra- and intracellular pH in the brain during and following ischemia in hyperglycemic and in moderately hypoglycemic rats, J. Cereb. Blood Flow Metab., 6, 574, 10.1038/jcbfm.1986.104
Katsura, 1992, Extra- and intracellular pH in the brain during ischaemia, related to tissue lactate content in normo- and hypercapnic rats, Eur. J. Neurosci., 4, 166, 10.1111/j.1460-9568.1992.tb00863.x
Silver, 1992, Ion homeostasis in rat brain in vivo: intra- and extracellular [Ca2+] and [H+] in the hippocampus during recovery from short-term, transient ischemia, J. Cereb. Blood Flow Metab., 12, 759, 10.1038/jcbfm.1992.107
Ljunggren, 1974, Changes in energy state and acid–base parameters of the rat brain during complete compression ischemia, Brain Res., 73, 277, 10.1016/0006-8993(74)91049-X
Kristián, 1997, Changes in ionic fluxes during cerebral ischaemia, Int. Rev. Neurobiol., 40, 27, 10.1016/S0074-7742(08)60714-X
Siesjo, 1992, Pathophysiology and treatment of focal cerebral ischemia. Part II: Mechanisms of damage and treatment, J. Neurosurg., 77, 337, 10.3171/jns.1992.77.3.0337
Ekholm, 1995, Influence of hyperglycemia and of hypercapnia on cellular calcium transients during reversible brain ischemia, Exp. Brain Res., 104, 462, 10.1007/BF00231980
Erecinska, 1996, Calcium handling by hippocampal neurons under physiologic and pathologic conditions, Adv. Neurol., 71, 119
Moody, 1984, Effects of intracellular H+ on the electrical properties of excitable cells, Annu. Rev. Neurosci., 7, 257, 10.1146/annurev.ne.07.030184.001353
Li, 1995, The influence of insulin-induced hypoglycemia on the calcium transients accompanying reversible forebrain ischemia in the rat, Exp. Brain Res., 105, 363
Katsura, 1994, Acidosis induced by hypercapnia exaggerates ischemic brain damage, J. Cereb. Blood Flow Metab., 14, 243, 10.1038/jcbfm.1994.31
Silver, 1990, Intracellular and extracellular changes of [Ca2+] in hypoxia and ischemia in rat brain in vivo, J. Gen. Physiol., 95, 837, 10.1085/jgp.95.5.837
Xie, 1995, Ion channel involvement in anoxic depolarization induced by cardiac arrest in rat brain, J. Cereb. Blood Flow Metab., 15, 587, 10.1038/jcbfm.1995.72
Blaustein, 1999, Sodium/calcium exchange: its physiological implications, Physiol. Rev., 79, 763, 10.1152/physrev.1999.79.3.763
Stys, 1998, Mechanisms of calcium and sodium fluxes in anoxic myelinated central nervous system axons, Neuroscience, 82, 21, 10.1016/S0306-4522(97)00230-3
Li, 2000, Important role of reverse Na(+)–Ca(2+) exchange in spinal cord white matter injury at physiological temperature, J. Neurophysiol., 84, 1116, 10.1152/jn.2000.84.2.1116
Li, 2000, Mechanisms of ionotropic glutamate receptor-mediated excitotoxicity in isolated spinal cord white matter, J. Neurosci., 20, 1190, 10.1523/JNEUROSCI.20-03-01190.2000
Siesjo, 1996, Acidosis-related damage, Adv. Neurol., 71, 209
Diemer, 1990, N-Methyl-d-aspartate and non-N-methyl-d-aspartate antagonists in global cerebral ischemia, Stroke, 21, III39
Buchan, 1991, The N-methyl-d-aspartate antagonist, MK-801, fails to protect against neuronal damage caused by transient, severe forebrain ischemia in adult rats, J. Neurosci., 11, 1049, 10.1523/JNEUROSCI.11-04-01049.1991
Moley, 1998, Hyperglycemia induces apoptosis in pre-implantation embryos through cell death effector pathways, Nat. Med., 4, 1421, 10.1038/4013
Keim, 2001, Hyperglycemia-induced apoptotic cell death in the mouse blastocyst is dependent on expression of p53, Mol. Reprod. Dev., 60, 214, 10.1002/mrd.1080
Ekholm, 1993, Coupling of cellular energy state and ion homeostasis during recovery following brain ischemia, Brain Res., 604, 185, 10.1016/0006-8993(93)90367-V
Folbergrova, 1974, Influence of complete ischemia on glycolytic metabolites, citric acid cycle intermediates, and associated amino acids in the rat cerebral cortex, Brain Res., 80, 265, 10.1016/0006-8993(74)90690-8
Lovell, 1963, The gamma-aminobutyric acid and factor i content of brain, J. Neurochem., 10, 479, 10.1111/j.1471-4159.1963.tb09850.x
Cardell, 1989, Pyruvate dehydrogenase activity in the rat cerebral cortex following cerebral ischemia, J. Cereb. Blood Flow Metab., 9, 350, 10.1038/jcbfm.1989.53
Wagner, 1990, Delayed decreases in specific brain mitochondrial electron transfer complex activities and cytochrome concentrations following anoxia/ischemia, J. Neurol. Sci., 100, 142, 10.1016/0022-510X(90)90025-I
Bogaert, 1994, Postischemic inhibition of cerebral cortex pyruvate dehydrogenase, Free Radic. Biol. Med., 16, 811, 10.1016/0891-5849(94)90197-X
Almeida, 1995, Effect of reperfusion following cerebral ischaemia on the activity of the mitochondrial respiratory chain in the gerbil brain, J. Neurochem., 65, 1698, 10.1046/j.1471-4159.1995.65041698.x
Zaidan, 1993, Selective reductions in the activity of the pyruvate dehydrogenase complex in mitochondria isolated from brain subregions following forebrain ischemia in rats, J. Cereb. Blood Flow Metab., 13, 98, 10.1038/jcbfm.1993.12
Zaidan, 1998, The pyruvate dehydrogenase complex is partially inactivated during early recirculation following short-term forebrain ischemia in rats, J. Neurochem., 70, 233, 10.1046/j.1471-4159.1998.70010233.x
Miljkovic-Lolic, 1997, Neuroprotective effects of acetyl-l-carnitine after stroke in rats, Ann. Emerg. Med., 29, 758, 10.1016/S0196-0644(97)70197-5
Rosenthal, 1992, Prevention of postischemic canine neurological injury through potentiation of brain energy metabolism by acetyl-l-carnitine, Stroke, 23, 1312, 10.1161/01.STR.23.9.1312
Turrens, 1997, Superoxide production by the mitochondrial respiratory chain, Biosci. Rep., 17, 3, 10.1023/A:1027374931887
Bates, 1994, Effects of 1-methyl-4-phenylpyridinium on isolated rat brain mitochondria: evidence for a primary involvement of energy depletion, J. Neurochem., 63, 640, 10.1046/j.1471-4159.1994.63020640.x
Starkov, 2002, Regulation of hydrogen peroxide production by brain mitochondria by calcium and Bax, J. Neurochem., 83, 220, 10.1046/j.1471-4159.2002.01153.x
Wagner, 1990, Delayed onset of neurologic deterioration following anoxia/ischemia coincides with appearance of impaired brain mitochondrial respiration and decreased cytochrome oxidase activity, J. Cereb. Blood Flow Metab., 10, 417, 10.1038/jcbfm.1990.72
Liu, 1993, Inhibition of postcardiac arrest brain protein oxidation by acetyl-l-carnitine, Free Radic. Biol. Med., 15, 667, 10.1016/0891-5849(93)90171-P
Allen, 1995, Changes of respiratory chain activity in mitochondrial and synaptosomal fractions isolated from the gerbil brain after graded ischaemia, J. Neurochem., 64, 2222, 10.1046/j.1471-4159.1995.64052222.x
Bittar, 1996, Selective distribution of lactate dehydrogenase isoenzymes in neurons and astrocytes of human brain, J. Cereb. Blood Flow Metab., 16, 1079, 10.1097/00004647-199611000-00001
Smith, 2003, Lactate: a preferred fuel for human brain metabolism in vivo, J. Cereb. Blood Flow Metab., 23, 658, 10.1097/01.WCB.0000063991.19746.11
McKenna, 2000, Differential distribution of LDH isozemes in cortical synaptic terminals and primary cultures of cortical neurons, J. Neurochem., 74, S87
Schurr, 1999, The glucose paradox in cerebral ischemia. New insights, Ann. N.Y. Acad. Sci., 893, 386, 10.1111/j.1749-6632.1999.tb07862.x
Li, 2001, Does long-term glucose infusion reduce brain damage after transient cerebral ischemia?, Brain Res., 912, 203, 10.1016/S0006-8993(01)02724-X
McKenna, 1998, Lactate transport by cortical synaptosomes from adult rat brain: characterization of kinetics and inhibitor specificity, Dev. Neurosci., 20, 300, 10.1159/000017325
Siesjo, 1999, Role and mechanisms of secondary mitochondrial failure, Acta Neurochir. Suppl. (Wien), 73, 7
B.K. Siesjo, T. Kristián, F. Shibazaki, H. Uchino, The role of mitochondrial dysfunction in reperfusion damage in the brain, in: S. Klumpp, J. Krieglstein (Eds.), Pharmacology of Cerebral Ischemia, Spinger-Verlag, New York, 2000, pp. 163–175.
Dux, 1987, Calcium in the mitochondria following brief ischemia of gerbil brain, Neurosci. Lett., 78, 295, 10.1016/0304-3940(87)90376-4
Zaidan, 1994, The calcium content of mitochondria from brain subregions following short-term forebrain ischemia and recirculation in the rat, J. Neurochem., 63, 1812, 10.1046/j.1471-4159.1994.63051812.x
Sims, 1987, Altered mitochondrial respiration in selectively vulnerable brain subregions following transient forebrain ischemia in the rat, J. Neurochem., 49, 1367, 10.1111/j.1471-4159.1987.tb01001.x
Nakahara, 1992, Changes in major phospholipids of mitochondria during postischemic reperfusion in rat brain, J. Neurosurg., 76, 244, 10.3171/jns.1992.76.2.0244
Gilboe, 1991, Recovery of postischemic brain metabolism and function following treatment with a free radical scavenger and platelet-activating factor antagonists, J. Neurochem., 56, 311, 10.1111/j.1471-4159.1991.tb02597.x
Fujimura, 1998, Cytosolic redistribution of cytochrome c after transient focal cerebral ischemia in rats, J. Cereb. Blood Flow Metab., 18, 1239, 10.1097/00004647-199811000-00010
Perez-Pinzon, 1999, Cytochrome c is released from mitochondria into the cytosol after cerebral anoxia or ischemia, J. Cereb. Blood Flow Metab., 19, 39, 10.1097/00004647-199901000-00004
Sugawara, 1999, Mitochondrial release of cytochrome c corresponds to the selective vulnerability of hippocampal CA1 neurons in rats after transient global cerebral ischemia, J. Neurosci., 19, RC39, 10.1523/JNEUROSCI.19-22-j0002.1999
Kristián, 1996, Calcium-related damage in ischemia, Life Sci., 59, 357, 10.1016/0024-3205(96)00314-1
Friberg, 2002, Mitochondrial permeability transition in acute neurodegeneration, Biochimie, 84, 241, 10.1016/S0300-9084(02)01381-0
Di Lisa, 2003, Mitochondria and reperfusion injury. The role of permeability transition, Basic Res. Cardiol., 98, 235, 10.1007/s00395-003-0415-x
Bernardi, 1994, Recent progress on regulation of the mitochondrial permeability transition pore; a cyclosporin-sensitive pore in the inner mitochondrial membrane, J. Bioenerg. Biomembr., 26, 509, 10.1007/BF00762735
Halestrap, 1997, Cyclosporin A binding to mitochondrial cyclophilin inhibits the permeability transition pore and protects hearts from ischaemia/reperfusion injury, Mol. Cell Biochem., 174, 167, 10.1023/A:1006879618176
Zoratti, 1995, The mitochondrial permeability transition, Biochim. Biophys. Acta, 1241, 139, 10.1016/0304-4157(95)00003-A
Gunter, 1990, Mechanisms by which mitochondria transport calcium, Am J. Physiol., 258, C755, 10.1152/ajpcell.1990.258.5.C755
Bernardi, 1996, The permeability transition pore as a mitochondrial calcium release channel: a critical appraisal, J. Bioenerg. Biomembr., 28, 131, 10.1007/BF02110643
Bernardi, 1999, Mitochondrial transport of cations: channels, exchangers, and permeability transition, Physiol. Rev., 79, 1127, 10.1152/physrev.1999.79.4.1127
Kristal, 1997, Mitochondrial permeability transition in the central nervous system: induction by calcium cycling-dependent and -independent pathways, J. Neurochem., 69, 524, 10.1046/j.1471-4159.1997.69020524.x
Andreyev, 1998, Cytochrome c release from brain mitochondria is independent of the mitochondrial permeability transition, FEBS Lett., 439, 373, 10.1016/S0014-5793(98)01394-5
Kristián, 2000, Characteristics of the calcium-triggered mitochondrial permeability transition in nonsynaptic brain mitochondria: effect of cyclosporin A and ubiquinone O, J. Neurochem., 74, 1999, 10.1046/j.1471-4159.2000.0741999.x
Ouyang, 1997, Release of mitochondrial aspartate aminotransferase (mAST) following transient focal ischemia suggests the opening of a mitochondrial permeability transition pore, Neurosci. Res. Commun., 20, 167, 10.1002/(SICI)1520-6769(199705)20:3<167::AID-NRC198>3.0.CO;2-3
Uchino, 1995, Cyclosporin A dramatically ameliorates CA1 hippocampal damage following transient forebrain ischaemia in the rat, Acta Physiol. Scand., 155, 469, 10.1111/j.1748-1716.1995.tb09999.x
Uchino, 1998, Amelioration by cyclosporin A of brain damage in transient forebrain ischemia in the rat, Brain Res., 812, 216, 10.1016/S0006-8993(98)00902-0
Friberg, 1998, but not FK 506, protects mitochondria and neurons against hypoglycemic damage and implicates the mitochondrial permeability transition in cell death, J. Neurosci., 18, 5151, 10.1523/JNEUROSCI.18-14-05151.1998
Yoshimoto, 1999, Posttreatment with the immunosuppressant cyclosporin A in transient focal ischemia, Brain Res., 839, 283, 10.1016/S0006-8993(99)01733-3
Matsumoto, 1999, Blockade of the mitochondrial permeability transition pore diminishes infarct size in the rat after transient middle cerebral artery occlusion, J. Cereb. Blood Flow Metab., 19, 736, 10.1097/00004647-199907000-00002
Sullivan, 2000, Continuous infusion of cyclosporin A postinjury significantly ameliorates cortical damage following traumatic brain injury, Exp. Neurol., 161, 631, 10.1006/exnr.1999.7282
Di Lisa, 2001, Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD+ and is a causative event in the death of myocytes in postischemic reperfusion of the heart, J. Biol. Chem., 276, 2571, 10.1074/jbc.M006825200
Zaidan, 1996, Alterations in the glutathione content of mitochondria following short-term forebrain ischemia in rats, Neurosci. Lett., 218, 75, 10.1016/S0304-3940(96)13128-1
Zaidan, 1999, Cyclosporin A-sensitive changes in mitochondrial glutathione are an early response to intrastiatal NMDA or forebrain ischemia in rats, J. Neurochem., 73, 2214
Griffiths, 1995, Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion, Biochem. J., 307, 93, 10.1042/bj3070093
Kristián, 2001, Acidosis promotes the permeability transition in energized mitochondria: implications for reperfusion injury, J. Neurotrauma, 18, 1059, 10.1089/08977150152693755
Ohta, 1992, Influence of ischemia on blood–brain and blood–CSF calcium transport, J. Cereb. Blood Flow Metab., 12, 525, 10.1038/jcbfm.1992.72
Deshpande, 1987, Calcium accumulation and neuronal damage in the rat hippocampus following cerebral ischemia, J. Cereb. Blood Flow Metab., 7, 89, 10.1038/jcbfm.1987.13
Warner, 1987, Ischemia in normo- and hyperglycemic rats: effects on brain water and electrolytes, Stroke, 18, 464, 10.1161/01.STR.18.2.464
Kristián, 2002, Heterogeneity of the calcium-induced permeability transition in isolated non-synaptic brain mitochondria, J. Neurochem., 83, 1297, 10.1046/j.1471-4159.2002.01238.x
Chinopoulos, 2003, Cyclosporin A-insensitive permeability transition in brain mitochondria: inhibition by 2-aminoethoxydiphenyl borate, J. Biol. Chem., 278, 27382, 10.1074/jbc.M303808200
Chalmers, 2003, The relationship between free and total calcium concentrations in the matrix of liver and brain mitochondria, J. Biol. Chem., 278, 19062, 10.1074/jbc.M212661200
Pysh, 1972, Variations in mitochondrial structure and content of neurons and neuroglia in rat brain: an electron microscopic study, Brain Res., 36, 1, 10.1016/0006-8993(72)90762-7
Tymianski, 1993, Secondary Ca2+ overload indicates early neuronal injury which precedes staining with viability indicators, Brain Res., 607, 319, 10.1016/0006-8993(93)91523-U
Tymianski, 1996, Normal and abnormal calcium homeostasis in neurons: a basis for the pathophysiology of traumatic and ischemic central nervous system injury, Neurosurgery, 38, 1176
Nicholls, 2003, Interactions between mitochondrial bioenergetics and cytoplasmic calcium in cultured cerebellar granule cells, Cell Calcium, 34, 407, 10.1016/S0143-4160(03)00144-1
Lipton, 1999, Ischemic cell death in brain neurons, Physiol. Rev., 79, 1431, 10.1152/physrev.1999.79.4.1431
Dirnagl, 1999, Pathobiology of ischaemic stroke: an integrated view, Trends Neurosci., 22, 391, 10.1016/S0166-2236(99)01401-0
Fiskum, 2000, Mitochondrial participation in ischemic and traumatic neural cell death, J. Neurotrauma, 17, 843, 10.1089/neu.2000.17.843
Liou, 2003, To die or not to die for neurons in ischemia, traumatic brain injury and epilepsy: a review on the stress-activated signaling pathways and apoptotic pathways, Prog. Neurobiol., 69, 103, 10.1016/S0301-0082(03)00005-4
Lo, 2003, Mechanisms, challenges and opportunities in stroke, Nat. Rev. Neurosci., 4, 399, 10.1038/nrn1106
Tsujimoto, 2000, VDAC regulation by the Bcl-2 family of proteins, Cell Death Differ., 7, 1174, 10.1038/sj.cdd.4400780
Marzo, 1998, The permeability transition pore complex: a target for apoptosis regulation by caspases and bcl-2-related proteins, J. Exp. Med., 187, 1261, 10.1084/jem.187.8.1261
Pastorino, 1998, The overexpression of Bax produces cell death upon induction of the mitochondrial permeability transition, J. Biol. Chem., 273, 7770, 10.1074/jbc.273.13.7770
Pastorino, 1999, Functional consequences of the sustained or transient activation by Bax of the mitochondrial permeability transition pore, J. Biol. Chem., 274, 31734, 10.1074/jbc.274.44.31734
Brenner, 2000, Bcl-2 and Bax regulate the channel activity of the mitochondrial adenine nucleotide translocator (in process citation), Oncogene, 19, 329, 10.1038/sj.onc.1203298
Deng, 2001, Novel role for JNK as a stress-activated Bcl2 kinase, J. Biol. Chem., 276, 23681, 10.1074/jbc.M100279200
Zhong, 2001, Independent control of cell survival by Raf-1 and Bcl-2 at the mitochondria, Oncogene, 20, 4807, 10.1038/sj.onc.1204614
Kroemer, 2000, Mitochondrial control of cell death, Nat. Med., 6, 513, 10.1038/74994
Nicotera, 1999, Excitotoxins in neuronal apoptosis and necrosis, J. Cereb. Blood Flow Metab., 19, 583, 10.1097/00004647-199906000-00001
Nicotera, 2000, Caspase requirement for neuronal apoptosis and neurodegeneration, IUBMB Life, 49, 421, 10.1080/152165400410272
Gido, 1997, Extracellular potassium in a neocortical core area after transient focal ischemia, Stroke, 28, 206, 10.1161/01.STR.28.1.206
Kristián, 1998, Calcium metabolism of focal and penumbral tissues in rats subjected to transient middle cerebral artery occlusion, Exp. Brain Res., 120, 503, 10.1007/s002210050424
Deshpande, 1992, Ultrastructural changes in the hippocampal CA1 region following transient cerebral ischemia: evidence against programmed cell death, Exp. Brain Res., 88, 91, 10.1007/BF02259131
Colbourne, 1999, Electron microscopic evidence against apoptosis as the mechanism of neuronal death in global ischemia, J. Neurosci., 19, 4200, 10.1523/JNEUROSCI.19-11-04200.1999
Hossmann, 2001, Electron microscopic investigation of rat brain after brief cardiac arrest, Acta Neuropathol. (Berl.), 101, 101, 10.1007/s004010000260
MacManus, 1999, Cerebral ischemia produces laddered DNA fragments distinct from cardiac ischemia and archetypal apoptosis, J. Cereb. Blood Flow Metab., 19, 502, 10.1097/00004647-199905000-00004
MacManus, 2000, Apoptosis after experimental stroke: fact or fashion?, J. Neurotrauma, 17, 899, 10.1089/neu.2000.17.899