Non-destructive methods for measuring chloride ingress into concrete: State-of-the-art and future challenges

Construction and Building Materials - Tập 68 - Trang 68-81 - 2014
M. Torres-Luque1,2, E. Bastidas-Arteaga2, F. Schoefs2, M. Sánchez-Silva1, J.F. Osma3
1Department of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1E N. 19A-40, Edificio ML, Piso 6, Bogotá, Colombia
2LUNAM Université, Université de Nantes-Ecole Centrale Nantes, Institute for Research in Civil and Mechanical Engineering (GeM)/Sea and Littoral Research Institute, CNRS UMR 6183/FR 3473, 2 rue de la Houssiniére, BP 92208, 44322 Nantes, France
3CMUA, Department of Electrical and Electronics Engineering, Universidad de los Andes, Carrera 1E N. 19A-40, Edificio ML, Piso 7, Bogotá, Colombia

Tài liệu tham khảo

Glasser, 2008, Durability of concrete – degradation phenomena involving detrimental chemical reactions, Cem Concr Res, 38, 226, 10.1016/j.cemconres.2007.09.015 Andrade, 2011, Measurement of ageing effect on chloride diffusion coefficients in cementitious matrices, J Nucl Mater, 412, 209, 10.1016/j.jnucmat.2010.12.236 Salta M, Pereira E. Factors influencing the corrosion in reinforced concrete. State of the art. Report N°2–3 concrete in marine environment. Tech rep, Laboratório Nacional de Engenharia Civil, LNEC; 2000–2006. Koch G, Brongers M, Thompson N, Virmani Y, Payer J. Corrosion costs and preventive strategies in the United States. Tech rep, U.S. Department of tranportation Federal Highway Administration, CC Technologies Laboratories, Inc. and NACE international; 2002. <http://www.nace.org/uploadedFiles/Publications/ccsupp.pdf>. Shi, 2012, Durability of steel reinforced concrete in chloride environments: an overview, Constr Build Mater, 30, 125, 10.1016/j.conbuildmat.2011.12.038 DURATINET – project context; 2012. <http://www.duratinet.org/. McCarter, 2004, Sensor systems for use in reinforced concrete structures, Constr Build Mater, 18, 351, 10.1016/j.conbuildmat.2004.03.008 McCarter, 2012, Developments in performance monitoring of concrete exposed to extreme environments, J Infrastruct Syst ASCE, 18, 167, 10.1061/(ASCE)IS.1943-555X.0000089 Prakash, 2009, Non-destructive testing techniques, New Age Sci Elsener, 2003, Non destructive determination of the free chloride content in cement based materials, Mater Corros, 54, 440, 10.1002/maco.200390095 Atkins, 1996, Monitoring chloride concentrations in hardened cement pastes using ion selective electrodes, Cem Concr Res, 26, 319, 10.1016/0008-8846(95)00218-9 Atkins, 2001, Sources of error in using silver/silver chloride electrodes to monitor chloride activity in concrete, Cem Concr Res, 31, 1207, 10.1016/S0008-8846(01)00544-0 Duffó, 2009, Characterization of solid embeddable reference electrodes for corrosion monitoring in reinforced concrete structures, Electrochim Acta, 54, 1010, 10.1016/j.electacta.2008.08.025 Duffó, 2009, Development of an embeddable sensor to monitor the corrosion process of new and existing reinforced concrete structures, Constr Build Mater, 23, 2746, 10.1016/j.conbuildmat.2009.04.001 de Vera, 2010, Determination of the selectivity coefficient of a chloride ion selective electrode in alkaline media simulating the cement paste pore solution, J Electroanal Chem, 639, 43, 10.1016/j.jelechem.2009.11.010 Polder, 2001, Test methods for on site measurement of resistivity of concrete – a RILEM TC-154 technical recommendation, Constr Build Mater, 15, 125, 10.1016/S0950-0618(00)00061-1 Polder, 2002, Characterisation of chloride transport and reinforcement corrosion in concrete under cyclic wetting and drying by electrical resistivity, Cem Concr Compos, 24, 427, 10.1016/S0958-9465(01)00074-9 Basheer, 2002, Monitoring electrical resistance of concretes containing alternative cementitious materials to assess their resistance to chloride penetration, Cem Concr Compos, 24, 437, 10.1016/S0958-9465(01)00075-0 McPolin, 2005, Obtaining progressive chloride profiles in cementitious materials, Constr Build Mater, 19, 666, 10.1016/j.conbuildmat.2005.02.015 James, 2003, Optical fibre long-period grating: characteristic and application, Meas Sci Technol, 14, R49, 10.1088/0957-0233/14/5/201 Li, 2004, Recent applications of fiber optic sensors to health monitoring in civil engineering, Eng Struct, 26, 1647, 10.1016/j.engstruct.2004.05.018 Wolfbeis, 2004, Fiber-optic chemical sensors and biosensors, Anal Chem, 76, 3269, 10.1021/ac040049d Tang, 2007, Measurement of chloride-ion concentration with long-period grating technology, Smart Mater Struct, 16, 665, 10.1088/0964-1726/16/3/013 Lam, 2009, Optical fiber refractive index sensor for chloride ion monitoring, Sens J, IEEE, 9, 525, 10.1109/JSEN.2009.2016597 Soutsos, 2001, Dielectric properties of concrete and their influence on radar testing, NDT&E Int, 34, 419, 10.1016/S0963-8695(01)00009-3 Abdul Rahman, 2012, Embedded capacitor sensor for monitoring corrosion of reinforcement in concrete, J Eng Sci Technol, 7, 209 Fernández-Sánchez, 2005, Electrochemical impedance spectroscopy studies of polymer degradation: application to biosensor development, TrAC Trends Anal Chem, 24, 37, 10.1016/j.trac.2004.08.010 Al-Qadi, 1997, Detection of chlorides in concrete using low radio frequencies, J Mater Civ Eng, 9, 29, 10.1061/(ASCE)0899-1561(1997)9:1(29) Shi, 1999, Determination of chloride diffusivity in concrete by AC impedance spectroscopy, Cem Concr Res, 29, 1111, 10.1016/S0008-8846(99)00079-4 Díaz, 2006, Study of the chloride diffusion in mortar: a new method of determining diffusion coefficients based on impedance measurements, Cem Concr Compos, 28, 237, 10.1016/j.cemconcomp.2006.01.009 Deus, 2014, The electrochemical behaviour of steel rebars in concrete: an Electrochemical Impedance Spectroscopy study of the effect of temperature, Electrochim Acta, 131, 106, 10.1016/j.electacta.2013.12.012 Bastidas-Arteaga, 2012, Stochastic improvement of inspection and maintenance of corroding reinforced concrete structures placed in unsaturated environments, Eng Struct, 41, 50, 10.1016/j.engstruct.2012.03.011 Oh, 2007, Effects of material and environmental parameters on chloride penetration profiles in concrete structures, Cem Concr Res, 37, 47, 10.1016/j.cemconres.2006.09.005 Alonso, 2009, Analysis of the variability of chloride threshold values in the literature, Mater Corros, 60, 631, 10.1002/maco.200905296 Sánchez-Silva, 2011, Life-cycle performance of structures subject to multiple deterioration mechanisms, Struct Safety, 33, 206, 10.1016/j.strusafe.2011.03.003 Olaya-Flórez, 2012, Resistencia a la corrosión de recubrimientos orgánicos por medio de espectrosopia de impedancia electroquímica, Rev Ing Univ, 16, 43 Broomfield, 2007 Neville, 1995, Chloride attack of reinforced concrete: An overview, Mater Struct, 28, 63, 10.1007/BF02473172 Galvele, 2005, Tafel’s law in pitting corrosion and crevice corrosion susceptibility, Corros Sci, 47, 3053, 10.1016/j.corsci.2005.05.043 Pradhan, 2011, Rebar corrosion in chloride environment, Constr Build Mater, 25, 2565, 10.1016/j.conbuildmat.2010.11.099 Vera, 2009, Corrosion products of reinforcement in concrete in marine and industrial environments, Mater Chem Phys, 114, 467, 10.1016/j.matchemphys.2008.09.063 Jaegermann, 1990, Effect of water–cement ratio and curing on chloride penetration into concrete exposed to mediterranean sea climate, ACI Mater J, 87, 333 Ahmad, 2003, Reinforcement corrosion in concrete structures, its monitoring and service life prediction – a review, Cem Concr Compos, 25, 459, 10.1016/S0958-9465(02)00086-0 Rasheeduzzafar, 1991, Effect of cement composition on chloride binding and corrosion of reinforcing steel in concrete, Cem Concr Res, 21, 777, 10.1016/0008-8846(91)90173-F Koleva, 2008, Correlation of microstructure, electrical properties and electrochemical phenomena in reinforced mortar. breakdown to multi-phase interface structures. Part I: Microstructural observations and electrical properties, Mater Charact, 59, 290, 10.1016/j.matchar.2007.01.015 Mohammed, 1999, Corrosion of steel bars with respect to orientation in concrete, ACI Mater J, 96, 154 Mohammed, 2001, Effect of crack width and bar types on corrosion of steel in concrete, J Mater Civ Eng ASCE, 13, 194, 10.1061/(ASCE)0899-1561(2001)13:3(194) Mohammed, 2006, Corrosion of steel bars in concrete with various steel surface conditions, ACI Mater J, 103, 233 Torres-Luque M. Estudio comparativo del proceso de corrosión en recubrimientos cerámicos, metálicos y orgánicos mediante técnicas electroquímicas, Master’s thesis, Universidad Nacional de Colombia; 2010. <http://bit.ly/RMfneU>. Mammoliti, 1996, The influence of surface finish of reinforcing steel and ph of the test solution on the chloride threshold concentration for corrosion initiation in synthetic pore solutions, Cem Concr Res, 26, 545, 10.1016/0008-8846(96)00018-X Bastidas-Arteaga, 2010, Influence of weather and global warming in chloride ingress into concrete: a stochastic approach, Struct Safety, 32, 238, 10.1016/j.strusafe.2010.03.002 Erdogdu, 2004, Determination of chloride diffusion coefficient of concrete using open-circuit potential measurements, Cem Concr Res, 34, 603, 10.1016/j.cemconres.2003.09.024 Costa, 1999, Chloride penetration into concrete in marine environment – Part I: Main parameters affecting chloride penetration, Matér Constr, 32, 252, 10.1007/BF02479594 Zivica, 2001, Acidic attack of cement based materials – a review.: Part 1. Principle of acidic attack, Constr Build Mater, 15, 331, 10.1016/S0950-0618(01)00012-5 Marinoni, 2003, The effects of atmospheric multipollutants on modern concrete, Atmos Environ, 37, 4701, 10.1016/j.atmosenv.2003.06.001 Zuquan, 2007, Interaction between sulfate and chloride solution attack of concretes with and without fly ash, Cem Concr Res, 37, 1223, 10.1016/j.cemconres.2007.02.016 Andrade, 2001, Electrochemical behaviour of steel rebars in concrete: influence of environmental factors and cement chemistry, Electrochim Acta, 46, 3905, 10.1016/S0013-4686(01)00678-8 Lorenzo, 2003, Role of aluminous component of fly ash on the durability of portland cement-fly ash pastes in marine environment, Waste Manage, 23, 785, 10.1016/S0956-053X(03)00030-8 Arya, 1990, Factors influencing chloride-binding in concrete, Cem Concr Res, 20, 291, 10.1016/0008-8846(90)90083-A de Rincón, 2007, Effect of the marine environment on reinforced concrete durability in iberoamerican countries: DURACON project/CYTED, Corros Sci, 49, 2832, 10.1016/j.corsci.2007.02.009 Meira, 2010, Durability of concrete structures in marine atmosphere zones – the use of chloride deposition rate on the wet candle as an environmental indicator, Cem Concr Compos, 32, 427, 10.1016/j.cemconcomp.2010.03.002 Yuan, 2009, Chloride binding of cement-based materials subjected to external chloride environment – a review, Constr Build Mater, 23, 1, 10.1016/j.conbuildmat.2008.02.004 Zhang, 1996, Diffusion behavior of chloride ions in concrete, Cem Concr Res, 26, 907, 10.1016/0008-8846(96)00069-5 Saetta, 1993, Analysis of chloride diffusion into partially saturated concrete, ACI Mater J, 90, 441 Suryavanshi, 1995, Pore size distribution of OPC & SRPC mortars in presence of chlorides, Cem Concr Res, 25, 980, 10.1016/0008-8846(95)00093-R Martín-Pérez, 2000, A study of the effect of chloride binding on service life predictions, Cem Concr Res, 30, 1215, 10.1016/S0008-8846(00)00339-2 Hosokawa Y, Yamada K, Johannesson B, Nilsson L-O. Models for chloride ion bindings in hardened cement paste using thermodynamic equilibrium calculations. In: Marchand J, Bissonnette B, Gagné R, Jolin M, Paradis F, editors. 2nd Interantional RILEM symposium on advances in concrete through science and engineering; 2006. <http://bit.ly/1kqyEJT>. Glass, 2000, The influence of chloride binding on the chloride induced corrosion risk in reinforced concrete, Corros Sci, 42, 329, 10.1016/S0010-938X(99)00083-9 Reddy, 2002, On the corrosion risk presented by chloride bound in concrete, Cem Concr Compos, 24, 1, 10.1016/S0958-9465(01)00021-X Zibara H. Binding of external chlorides by cement pastes. Ph.D. thesis, University of Toronto; 2001. Cook, 1977, Influence of chloride in reinforced concrete, Am Soc Test Mater ASTM STP, 629, 20 Angst, 2009, Critical chloride content in reinforced concrete – a review, Cem Concr Res, 39, 1122, 10.1016/j.cemconres.2009.08.006 Standard test method for acid-soluble chloride in mortar and concrete: ASTM C1152M – 04; 2006. Tuutti K. Corrosion of steel in concrete. Swedish Cement and Concrete Research Institute; 1982. <http://www.lunduniversity.lu.se/o.o.i.s?id=12683&postid=3173286>. Glass, 1997, The presentation of the chloride threshold level for corrosion of steel in concrete, Corros Sci, 39, 1001, 10.1016/S0010-938X(97)00009-7 Glass, 2000, Corrosion inhibition in concrete arising from its acid neutralisation capacity, Corros Sci, 42, 1587, 10.1016/S0010-938X(00)00008-1 Ann, 2007, Chloride threshold level for corrosion of steel in concrete, Corros Sci, 49, 4113, 10.1016/j.corsci.2007.05.007 Hausmann, 1967, Steel corrosion in concrete. How does it occur?, Mater Protect, 6, 19 Izquierdo, 2004, Potentiostatic determination of chloride threshold values for rebar depassivation: experimental and statistical study, Electrochim Acta, 49, 2731, 10.1016/j.electacta.2004.01.034 Alonso, 2000, Chloride threshold values to depassivate reinforcing bars embedded in a standardized OPC mortar, Cem Concr Res, 30, 1047, 10.1016/S0008-8846(00)00265-9 Sheils, 2010, Development of a two-stage inspection process for the assessment of deteriorating infrastructure, Reliab Eng Syst Safety, 95, 182, 10.1016/j.ress.2009.09.008 Bonnet S, Schoefs F, Ricardo J, Salta M. Effect of error measurements of chloride profiles on reliability assessment. In: 10th International conference on structural safety and reliability; 2009. Concrete, hardened: accelerated chloride penetration: NT BUILD 443; 1995. Lizarazo-Marriaga, 2009, Effect of the non-linear membrane potential on the migration of ionic species in concrete, Electrochim Acta, 54, 2761, 10.1016/j.electacta.2008.11.031 Lizarazo-Marriaga, 2009, Determination of the concrete chloride diffusion coefficient based on an electrochemical test and an optimization model, Mater Chem Phys, 117, 536, 10.1016/j.matchemphys.2009.06.047 Bastidas-Arteaga E. Contribution for sustainable management of reinforced concrete structures subjected to chloride penetration. Ph.D. thesis, Université de Nantes; 2010. Standard test method for electrical indication of concrete’s ability to resist chloride ion penetration: ASTM C 1202-10; 2010. Andrade, 1993, Calculation of chloride diffusion coefficients in concrete from ionic migration measurements, Cem Concr Res, 23, 724, 10.1016/0008-8846(93)90023-3 Friedmann, 2004, A direct method for determining chloride diffusion coefficient by using migration test, Cem Concr Res, 34, 1967, 10.1016/j.cemconres.2004.01.009 Standard test method for determing the penetration of chloride ion into concrete by ponding: ASTM C 1543-10A; 2010. Arya, 1990, An assessment of four methods of determining the free chloride content of concrete, Mater Struct, 23, 319, 10.1007/BF02472710 de Vera Almenar G. Ingreso de cloruros en hormigón. métodos de análisis, detección no destructiva y modelización del transporte tras un aporte inicial limitado. Ph.D. thesis, Universitat d’Alacant; 2000. <http://rua.ua.es/dspace/handle/10045/4124>. Muralidharan, 2005, Studies on the aspects of chloride ion determination in different types of concrete under macro-cell corrosion conditions, Build Environ, 40, 1275, 10.1016/j.buildenv.2004.10.005 Angst, 2014, Spatial variability of chloride in concrete within homogeneously exposed areas, Cem Concr Res, 56, 40, 10.1016/j.cemconres.2013.10.010 Millard, 1991, Reinforced concrete resistivity measurement techniques, ICE Proc, 91, 71 Gowers, 1999, Measurement of concrete resistivity for assessment of corrosion severity of steel using Wenner technique, ACI Mater J, 96, 536 Elsener, 2002, Macrocell corrosion of steel in concrete – implications for corrosion monitoring, Cem Concr Compos, 24, 65, 10.1016/S0958-9465(01)00027-0 Rajabipour, 2005, Procedure to interpret electrical conductivity measurements in cover concrete during rewetting, J Mater Civ Eng, 17, 586, 10.1061/(ASCE)0899-1561(2005)17:5(586) Larsen C, Sellevold E, Askeland F, Østvik J-M, Vennesland O. Electrical resistivity of concrete Part II: Influence of moisture content and temperature. In: 2nd International symposium on advances in concrete through science and engineering. Quebec, Canada; 2006. Basheer, 2000, Effectiveness of in situ moisture preconditioning methods for concrete, J Mater Civ Eng, 12, 131, 10.1061/(ASCE)0899-1561(2000)12:2(131) McCarter, 2009, Electrode configurations for resistivity measurements on concrete, ACI Mater J, 106, 258 Loubser Du Plooy R. The development and combination of electromagnetic non-destructive evaluation techniques for the assessment of cover concrete condition prior to corrosion. Ph.D. thesis, Université de Nantes; 2013. Falciai, 2001, Long period gratings as solution concentration sensors, Sen Actuat B: Chem, 74, 74, 10.1016/S0925-4005(00)00714-0 Shu, 2001, Sampled fiber bragg grating for simulataneous refractive-index and temperature measurement, Opt Lett, 26, 774, 10.1364/OL.26.000774 Keddam, 1997, Impedance measurements on cement paste, Cem Concr Res, 27, 1191, 10.1016/S0008-8846(97)00117-8 Koleva, 2008, Correlation of microstructure, electrical properties and electrochemical phenomena in reinforced mortar. breakdown to multi-phase interface structures. Part II: Pore network, electrical properties and electrochemical response, Mater Charact, 59, 801, 10.1016/j.matchar.2007.06.016 Sánchez, 2008, Microstructural modifications in portland cement concrete due to forced ionic migration tests. study by impedance spectroscopy, Cem Concr Res, 38, 1015, 10.1016/j.cemconres.2008.03.012 Vedalakshmi, 2008, Determination of diffusion coefficient of chloride in concrete: an electrochemical impedance spectroscopic approach, Mater Struct, 41, 1315, 10.1617/s11527-007-9330-1 Vedalakshmi, 2009, Determination of diffusion coefficient of chloride in concrete using Warburg diffusion coefficient, Corros Sci, 51, 1299, 10.1016/j.corsci.2009.03.017 Sbartaï, 2006, Ability of the direct wave of radar ground-coupled antenna for {NDT} of concrete structures, {NDT}&E Int, 39, 400, 10.1016/j.ndteint.2005.11.003 Sbartaï, 2007, Using radar direct wave for concrete condition assessment: correlation with electrical resistivity, J Appl Geophys, 62, 361, 10.1016/j.jappgeo.2007.02.003 Hugenschmidt, 2008, Detection of chlorides and moisture in concrete structures with ground penetrating radar, Mater Struct, 41, 785, 10.1617/s11527-007-9282-5 Robert, 1998, Dielectric permittivity of concrete between 50MHz and 1GHz and {GPR} measurements for building materials evaluation, J Appl Geophys, 40, 89, 10.1016/S0926-9851(98)00009-3 Halabe, 1997, Detection of sub-surface anomalies in concrete bridge decks using ground penetrating radar, ACI Mater J, 94, 396 Sbartaï, 2009, Non-destructive evaluation of concrete physical condition using radar and artificial neural networks, Constr Build Mater, 23, 837, 10.1016/j.conbuildmat.2008.04.002 Montgomery, 2001 Leach, 2010 Schoefs, 2009, Assessment of ROC curves for inspection of random fields, Struct Safety, 31, 409, 10.1016/j.strusafe.2009.01.004 Loock, 2012, Detection limits of chemical sensors: applications and misapplications, Sens Actuat B: Chem, 173, 157, 10.1016/j.snb.2012.06.071 Villain, 2012, Durability diagnosis of a concrete structure in a tidal zone by combining {NDT} methods: laboratory tests and case study, Constr Build Mater, 37, 893, 10.1016/j.conbuildmat.2012.03.014 Schoefs, 2012, The alpha delta method for modelling expert judgement and combination of non-destructive testing tools in risk-based inspection context: application to marine structures, Struct Infrastruct Eng, 8, 531, 10.1080/15732479.2010.505374 La norme béton: NF EN 206-1; 2000. Sheils, 2012, Investigation of the effect of the quality of inspection techniques on the optimal inspection interval for structures, Struct Infrastruct Eng, 8, 557, 10.1080/15732479.2010.505377 Ann, 2010, Service life prediction of a concrete bridge structure subjected to carbonation, Constr Build Mater, 24, 1494, 10.1016/j.conbuildmat.2010.01.023