Periodic Solutions of Periodic Delay Lotka–Volterra Equations and Systems

Journal of Mathematical Analysis and Applications - Tập 255 Số 1 - Trang 260-280 - 2001
Yongkun Li1, Yang Kuang2
1Department of Mathematics, Yunnan University, Kunming, Yunnan 650091, People’s Republic of China
2Department of Mathematics, Arizona State University, Tempe, Arizona, 85287

Tóm tắt

Từ khóa


Tài liệu tham khảo

Freedman, 1992, Periodic solutions of single-species models with periodic delay, SIAM J. Math. Anal., 23, 689, 10.1137/0523035

Gaines, 1977

Gopalsamy, 1990, Environmental periodicity and time delays in a “food-limited” population model, J. Math. Anal. Appl., 147, 545, 10.1016/0022-247X(90)90369-Q

Halbach, 1973, Life table data and population dynamics of the rotifer Brachionous calyciflorus pallas as influenced by periodically oscillating temperature

Hale, 1993

Hale, 1974, Coincidence degree and periodic solutions of neutral equations, J. Differential Equations, 15, 295, 10.1016/0022-0396(74)90081-3

Kuang, 1993

Li, 1999, Periodic solutions of a periodic delay predator-prey system, Proc. Amer. Math. Soc., 127, 1331, 10.1090/S0002-9939-99-05210-7

Mawhin, 1974, Periodic solutions of some vector retarded functional differential equation, J. Math. Anal. Appl., 45, 588, 10.1016/0022-247X(74)90053-5

May, 1974

Smith, 1992, Periodic solutions of delay differential equations of threshold-type delays, 129, 153

Tang, 1997, Existence, uniqueness and asymptotic stability of periodic solutions of periodic functional differential systems, Tohoku Math. J., 49, 217, 10.2748/tmj/1178225148

Zhang, 1990, Global attractivity and oscillations in a periodic delay-logistic equations, J. Math. Anal. Appl., 150, 274, 10.1016/0022-247X(90)90213-Y

Zhao, 1997, Global existence of periodic solutions in a class of delayed Gause-type predator-prey systems, Nonlinear Anal., 28, 1373, 10.1016/0362-546X(95)00230-S