Environmental magnetic studies of lacustrine sediments
Tóm tắt
In recent decades, environmental magnetism has become an important method for studying past global climatic and environmental changes. For an environmental magnetic study, it is important to understand the magnetic properties of various magnetic minerals in lacustrine sediments and the processes involved in the formation, transport, and preservation of these magnetic minerals. The magnetic response of lacustrine sediments to climatic change may vary widely from lake to lake. To reconstruct the processes contributing to paleoclimatic and paleoenvironmental change, it is, therefore, necessary to derive a complete understanding of the potential origin of the magnetic signal observed.
Tài liệu tham khảo
Verosub, K. L., Roberts, A. P., Environmental magnetism: Past, present, and future, J. Geophys. Res., 1995, 100: 2175.
Evans, M. E., Heller, F., Bloemendal, J. et al., Natural magnetic archive of past global change, Surv. Geophys., 1997, 18: 183.
Oldfield, F., Environmental magnetism—A personal perspective, Quat. Sci. Rev., 1991, 10: 73.
Dearing, J. A., Einer, J. K., Happey-Wood, C. M., Recent sediment flux and erosional processes in a Welsh upland lake-catchment based on magnetic susceptibility measurements, Quat. Res., 1981, 16: 356.
Hilton, J., Lishman, J. P., The effect of redox change on the magnetic susceptibility of sediments from a seasonally anoxic lake, Limnology and Oceanography, 1985, 30: 907.
Snowball, I. F., Thompson, R., The occurrence of greigite in sediments from Loch Lomond, J. Quat. Sci., 1988, 3: 121.
Hu, S. Y., Appel, E., Hoffmann, V. et al., Gyromagnetic remanence acquired by greigite during static three-axis AF demagnetization, Geophys. J. Int., 1998, 134: 831.
Zhu, R. X., Shi, C. D., Suchy, V. et al., Magnetic properties and paleoclimatic implications of loess-paleosol sequences of Czech Republic, Sci. in China, Ser. D, 2001, 44(5): 385.
Snowball, I., The detection of single-domain greigite (Fe3S4) using rotational remanent magnetization (RRM) and the effective gyro field (Bg): mineral magnetic paleomagnetic applications, Geophys. J. Int., 1997, 130: 704.
Lowenstam, H. A., Minerals formed by organisms, Science, 1981, 21: 1126.
Yan, G. L., Liang, X. M., Xie, Q. et al., The identification of magnetotactic bacteria from Quaternary deposit (soil) in Shuanghe Oil Field, Henan, Earth Sciences, 1995, 20(2): 166.
Jia, R. F., Yan, B. Z., Li, R. S. et al., Characteristics of magnetotactic bacteria in Duanjiapo loess section, Shaanxi Province and their environmental significance, Sci. in China, Ser. D, 1996, 39(5): 478.
Horng, C. S., Torii, M., Shea, K. S. et al., Inconsistent magnetic polarities between greigite- and pyrrhotite-magnetite-bearing marine sediments from the Tsailiao-chi section, southwestern Taiwan, Earth Planet. Sci. Lett., 1998, 164: 467.
Hu, S. Y., Appel, E., Hoffmann, V. et al., Identification of greigite in lake sediments and its magnetic significance, Sci. in China, Ser. D, 2002, 45(1): 81.
Flanders, P. J., Collection, measurement, and analysis of airborne particles from pollution in the environment, J. Appl. Phys., 1994, 75: 5931.
Hunt, A., The application of mineral magnetic methods to atmospheric aerosol discrimination, Phys. Earth Planet. Inter., 1986, 42: 10.
Zhu, R. X., Zhou, L. P., Laj, C. et al., The Blake geomagnetic polarity episode recorded in Chinese loess, Geophys. Res. Lett., 1994, 21(8): 697.
Zhu, R. X., Wu, H. N., Li, C. J. et al., Magnetic property of Chinese loess and its paleoclimate significance, Sci. in China, Ser. D, 1994, 38(2): 238.
Zhu, R. X., Kazansky, A., Matasova, G. et al., Rock-magnetic investigation of Siberia loess and its implication, Chinese Sci. Bull., 2000, 45(23): 2192.
Laj, C., Kissel, C., Mazaud, A. et al., North Atlantic paleointensity stack since 75 ka (NAPIS-75) and the duration of the Laschamp event, Phil. Trans. R. Soc. Lond. (A), 2000, 358: 1009.
Deng, C. L., Zhu, R. X., Verosub, K. L. et al., Paleoclimatic significance of the temperature-dependent susceptibility of Holocene loess along a north-south transect in the Chinese loess plateau, Geophys. Res. Lett., 2000, 27(22): 3715.
Zhu, R. X., Coe, R. S., Zhao, X. X. et al., Sedimentary record of two geomagnetic excursions within the last 15000 years in Beijing, China, J. Geophys. Res., 1998, 103(B12): 30323.
Hu, S. Y., Wang, S. M., Appel, E., The environmental mechanism of fluctuations of magnetic susceptibility recorded in lacustrine sediments from Jalai Nur, Inner Mongolia, Sci. in China, Ser. D, 2000, 43(5): 534.
Dunlop, D., Özdemir, Ö., Rock Magnetism: Fundamentals and Frontiers, Cambridge: Cambridge University Press, 1997, 262–287.
Zhu, R. X., Lin, M., Pan, Y. X., History of the temperature-dependence of susceptibility and its implications: Preliminary results along an E-W transect of the Chinese Loess Plateau, Chinese Sci. Bull., 1999, 44 (supp): 81.
Hilton, J., Normalized magnetic parameters and their applicability to paleomagnetism and environmental magnetism, Geology, 1986, 14: 887.
Peck, J. A., King, J. W., Colman, S. M. et al., A rock-magnetic record from Lake Baikal, Siberia: Evidence for Late Quaternary climate change, Earth Planet. Sci. Lett., 1994, 122: 221.
Willams, D. F., Peck, J., Karabanov, E. B. et al., Lake Baikal record of continental climate response to orbital insolation during the past 5 million years, Science, 1997, 278: 1114.
Thouveny, N., Beaulieu, J. L., Bonifay, E. et al., Climate variations in Europe over the past 140 kyr deduced from rock magnetism, Nature, 1994, 371: 503.
Heller, F., Evans, M. E., Loess magnetism, Rev. Geophys., 1995, 33: 211.