A comparison of aggregation behavior in aqueous humic acids
Tóm tắt
The ability of six humic acids (HAs) to form pseudomicellar structures in aqueous solution was evaluated by five techniques: size exclusion chromatography; pyrene fluorescence enhancement; the pyrene I1/I3 ratio; the cloud point of dilute HA solutions; and the fluorescence anisotropy of HAs. Soil HAs were found to aggregate most easily, both on microscopic and macroscopic scales. The formation of amphiphilic structures was chiefly related to HA-solvent interactions: highly solvated HAs aggregated poorly, while a lignite derived material underwent intermolecular, rather than intramolecular, rearrangements. A newly discovered algal HA was found to have minimal aggregative properties.
Tài liệu tham khảo
Swift RS: Macromolecular properties of soil humic substances: fact, fiction, and opinion. Soil Sci. 1999, 164: 790-10.1097/00010694-199911000-00003.
Thorn KA, Folan DW, MacCarthyn P: Characterization of the International Humic Substances Society Standard and Reference Fulvic and Humic Acids by Solution State Carbon-13 and Hydrogen-1 Nuclear Magnetic Resonance Spectrometry, Water Resources Investigations Report 89-4196. 1989, US Geological Survey, Denver, CO
Anderson MA, Hung A, Mills D, Scott MS: Factors affecting the surface tension of soil solutions and solutions of humic acids. Soil Sci. 1995, 160: 111-
Chiou CT, Malcolm RL, Brinton TI, Kile DE: Water solubility enhancement of some organic pollutants and pesticides by dissolved numic and luivic acids. Environ Sci Technol. 1986, 20: 502-10.1021/es00147a010.
Larson RA, Rounds SA: Photochemistry in Aqueous Surface Layers. Photochemistry in Environmental Aquatic Systems. Edited by: Zika RG, Cooper WJ. 1987, American Chemical Society, Washington, DC
Kile DE, Chiou CT: Water-Solubility Enhancement of Nonionic Organic Contaminants. Aquatic Humic Substances. Edited by: Suffet IH, MacCarthy P. 1989, American Chemical Society, Washington, DC
Rochus W, Sipos S: Micelle formation by humic substances. Agrochimica. 1978, 22: 446-
Wershaw RL: A new model for humic materials and their interactions with hydrophobic organic chemicals in soil-water or sediment-water systems. J Contam Hydrol. 1986, 1: 29-10.1016/0169-7722(86)90005-7.
Wershaw RL: Membrane-micelle model for humus in soils and sediments and its relation to humification, Open file report 91-513. 1992, US Geological Survey, Denver, CO
Wershaw RL: Environ Sci Technol. 1993, 27: 814-10.1021/es00042a603.
Engebretson RR, von Wandruszka R: Microorganization in dissolved humic acids. Environ Sci Technol. 1994, 28: 1934-10.1021/es00060a026.
Engebretson RR, von Wandruszka R: Kinetic aspects of cation-enhanced aggregation in aqueous humic acids. Environ Sci Technol. 1998, 32: 488-10.1021/es970693s.
von Wandruszka R: The micellar model of humic acid: evidence from pyrene fluorescence measurements. Soil Sci. 1998, 163: 921-10.1097/00010694-199812000-00002.
Yates LM, Engebretson RR, Haakenson TM, von Wandruszka R: Immobilization of aqueous pyrene by dissolved humic acid. Anal Chim Acta. 1997, 356: 295-10.1016/S0003-2670(97)00503-5.
Engebretson RR, von Wandruszka R: The effect of molecular size on humic acid associations. Org Geochem. 1997, 26: 759-10.1016/S0146-6380(97)00057-0.
von Wandruszka R, Ragle C, Engebretson RR: The role of selected cations in the formation of pseudomicelles in aqueous humic acid. Talanta. 1997, 44: 805-10.1016/S0039-9140(96)02116-9.
Murphy EM, Zachara JM, Smith SC: Influence of mineral-bound humic substances on the sorption of hydrophobic organic compounds. Environ Sci Technol. 1990, 24: 1507-10.1021/es00080a009.
Ames TT, Grulke EA: Group contribution method for predicting equilibria of nonionic organic compounds between soil organic matter and water. Environ Sci Technol. 1995, 29: 2273-
Aochi YO, Farmer WJ: Role of microstructural properties in the time-dependent sorption/desorption behavior of 1,2-dichloroethane on humic substances. Environ Sci Technol. 1997, 31: 2420-10.1021/es960927s.
Litton GM, Guymon GL: Laboratory experiments evaluating the transport and fate of DBCP in Hanford sandy loam. J Environ Qual. 1993, 22: 311-
Magee BR, Lion LW, Lemley AT: Transport of dissolved organic macromolecules and their effect on the transport of phenanthrene in porous media. Environ Sci Technol. 1991, 25: 323-10.1021/es00014a017.
Product literature published on January 25. 1985, International Humic Substances Society, St. Paul, MN
Ghabbour EA, Khairy AH, Cheney DP, Gross V, Davies G, Gilbert TR, Zhang X: Isolation of humic acid from the brown alga. Pilayella littoralis J Appl Phycol. 1994, 6: 459-10.1007/BF02182399.
Cameron RS, Swift RS, Thornton BK, Posner AM: Calibration of gel permeation chromatography materials for use with humic acid. J Soil Sci. 1972, 23: 342-
Dong DC, Winnik MA: The py scale of solvent polarities. Solvent effects on the vibronic fine structure of pyrene fluorescence and empirical correlations with ET and Y values. Photochem Photobiol. 1982, 35: 1721-
Hinze WL, Pramauro E: A critical review of surfactant-mediated phase separation (cloud point extraction): theory and applications. Crit Rev Anal Chem. 1993, 24: 133-
Lackowicz JR: Principles of Fluorescence Spectroscopy. 1999, Kluwer Academic, New York, 291-316. 2