Cutoff-Based Modeling of Coulomb Interactions for Atomistic-to-Continuum Multiscale Methods
Tóm tắt
Atomic interactions in a large class of functional materials, essentially—all dielectrics, polarizable solids and ionic solids, involve long-range Coulomb interactions. Yet atomistic-to-continuum multiscale methods, such as the quasicontinuum method, are currently applicable only in cases where the atomic interactions are short-ranged. This restriction on the nature of atomic-level interactions for multiscale methods excludes numerous materials that are central to various scientific and industrial applications. A number of studies have pointed out unphysical artifacts in molecular simulations upon using the direct cutoff-based truncated sum to evaluate Coulomb interactions in ionic solids. However, recently it is understood that the artifacts of the direct cutoff-based truncated sum can be significantly minimized if a suitable correction term is added. In this work we examine whether or not the Wolf summation method, one of the prominent cutoff-based methods, is suitable to carry out the accumulation of the Coulomb interactions within the context of atomistic-to-continuum multiscale methods. In this regard, we choose the quasicontinuum method from the existing collection of multiscale methods for demonstration. It is found that the Wolf summation method can be applied if the atomistic system has charge ordering; otherwise, the error in the accumulation of the Coulomb interactions could be large.
Tài liệu tham khảo
D.S. Aidhy, P.C. Millett, T. Desai, D. Wolf, S.R. Phillpot, Kinetically evolving irradiation-induced point defect clusters in UO\(_2\) by molecular dynamics simulation. Phys. Rev. B 80(10), 104107 (2009)
G. Alzetta, D. Arndt, W. Bangerth, V. Boddu, B. Brands, D. Davydov, R. Gassmöller, T. Heister, L. Heltai, K. Kormann et al., The deal.II Library, Version 9.0. J. Numer. Math. 26(4), 173–183 (2018)
J. Amelang, G. Venturini, D. Kochmann, Summation rules for a fully nonlocal energy-based quasicontinuum method. J. Mech. Phys. Solids 82, 378–413 (2015)
M. Ariza, I. Romero, M. Ponga, M. Ortiz, HotQC simulation of nanovoid growth under tension in copper. Int. J. Fract. 174(1), 75–85 (2012)
W. Bangerth, R. Hartmann, G. Kanschat, deal.II—a general-purpose object-oriented finite element library. ACM Trans. Math. Softw. (TOMS) 33(4), 24 (2007)
J. Barnes, P. Hut, A hierarchical \({\cal{O}}({N} \, \text{ log } \,{N})\) force-calculation algorithm. Nature 324(6096), 446 (1986)
E. Bitzek, P. Koskinen, F. Gähler, M. Moseler, P. Gumbsch, Structural relaxation made simple. Phys. Rev. Lett. 97(17), 170201 (2006)
V. Boddu, F. Endres, P. Steinmann, Molecular dynamics study of ferroelectric domain nucleation and domain switching dynamics. Sci. Rep. 7(1), 806 (2017)
F. Bornemann, B. Erdmann, R. Kornhuber, Adaptive multilevel methods in three space dimensions. Int. J. Numer. Methods Eng. 36(18), 3187–3203 (1993)
J. Clarke, W. Smith, L. Woodcock, Short range effective potentials for ionic fluids. J. Chem. Phys. 84(4), 2290–2294 (1986)
D. Davydov, T. Heister, M. Kronbichler, P. Steinmann, Matrix-free locally adaptive finite element solution of density-functional theory with nonorthogonal orbitals and multigrid preconditioning. Phys. Status Solidi B Basic Solid State Phys. 255, 1800069 (2018)
T.G. Desai, P. Millett, M. Tonks, D. Wolf, Atomistic simulations of void migration under thermal gradient in UO\(_2\). Acta Materialia 58(1), 330–339 (2010)
O. Diéguez, S. Tinte, A. Antons, C. Bungaro, J. Neaton, K.M. Rabe, D. Vanderbilt, Ab initio study of the phase diagram of epitaxial BaTiO\(_3\). Phys. Rev. B 69(21), 212101 (2004)
M. Dobson, R.S. Elliott, M. Luskin, E.B. Tadmor, A multilattice quasicontinuum for phase transforming materials: cascading Cauchy–Born kinematics. J. Comput. Aided Mater. Des. 14, 219–237 (2007)
B. Eidel, A. Stukowski, A variational formulation of the quasicontinuum method based on energy sampling in clusters. J. Mech. Phys. Solids 57(1), 87–108 (2009)
B. Eidel, A. Stukowski, J. Schröder, Energy-minimization in atomic-to-continuum scale-bridging methods. PAMM 11(1), 509–510 (2011)
U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, L.G. Pedersen, A smooth particle mesh ewald method. J. Chem. Phys. 103(19), 8577–8593 (1995)
H. Evjen, On the stability of certain heteropolar crystals. Phys. Rev. 39(4), 675 (1932)
P.P. Ewald, Die berechnung optischer und elektrostatischer gitterpotentiale. Ann. Phys. 64(3), 253–287 (1921)
I. Fukuda, H. Nakamura, Non-ewald methods: theory and applications to molecular systems. Biophys. Rev. 4(3), 161–170 (2012)
S. Ghorbanali, M.G. Shahraki, The coupled effects of oxygen defect and crystallographic orientation on the electromechanical properties of batio\(_3\) nanowires. Solid State Commun. 252, 16–21 (2017)
L. Greengard, V. Rokhlin, A fast algorithm for particle simulations. J. Comput. Phys. 73(2), 325–348 (1987)
K. Hardikar, V. Shenoy, R. Phillips, Reconciliation of atomic-level and continuum notions concerning the interaction of dislocations and obstacles. J. Mech. Phys. Solids 49(9), 1951–1967 (2001)
R.W. Hockney, J.W. Eastwood, Computer Simulation Using Particles (CRC Press, Boca Raton, 1988)
L.H.B.L. Jun-Wan, N.Y.S.M. Ji-Fa, W. Hong-Sheng, Multiscale analysis of defect initiation on the atomistic crack tip in body-centered-cubic metal Ta. Acta Phys. Sin. 10, 074 (2011)
J. Knap, M. Ortiz, An analysis of the quasicontinuum method. J. Mech. Phys. Solids 49(9), 1899–1923 (2001)
D.M. Kochmann, J.S. Amelang, in Multiscale Materials Modeling for Nanomechanics, ed. by C.R. Weinberger, G.J. Tucker (Springer, 2016), pp. 159–193
S. Kwon, Y. Lee, J.Y. Park, D. Sohn, J.H. Lim, S. Im, An efficient three-dimensional adaptive quasicontinuum method using variable-node elements. J. Comput. Phys. 228(13), 4789–4810 (2009)
J. Li, H. Lu, Y. Ni, J. Mei, Quasicontinuum study the influence of misfit dislocation interactions on nanoindentation. Comput. Mater. Sci. 50(11), 3162–3170 (2011)
E. Madelung, Das elektrische feld in systemen von regelmässig angeordneten punktladungen. Phys. Zs XIX, 524–533 (1918)
J. Marshall, K. Dayal, Atomistic-to-continuum multiscale modeling with long-range electrostatic interactions in ionic solids. J. Mech. Phys. Solids 62, 137–162 (2014)
R.E. Miller, E.B. Tadmor, The Quasicontinuum Method: Overview, applications and current directions. J. Comput. Aided Mater. Des. 9(3), 203–239 (2002)
M. Patra, M. Karttunen, M.T. Hyvönen, E. Falck, I. Vattulainen, Lipid bilayers driven to a wrong lane in molecular dynamics simulations by subtle changes in long-range electrostatic interactions. J. Phys. Chem. B 108(14), 4485–4494 (2004)
H.G. Petersen, D. Soelvason, J.W. Perram, E. Smith, The very fast multipole method. J. Chem. Phys. 101(10), 8870–8876 (1994)
W.C. Rheinboldt, C.K. Mesztenyi, On a data structure for adaptive finite element mesh refinements. ACM Trans. Math. Softw (TOMS) 6(2), 166–187 (1980)
V. Rokhlin, Rapid solution of integral equations of classical potential theory. J. Comput. Phys. 60, 187–207 (1985). https://doi.org/10.1016/0021-9991(85)90002-6
M. Saito, Molecular dynamics simulations of proteins in solution: artifacts caused by the cutoff approximation. J. Chem. Phys. 101(5), 4055–4061 (1994)
T. Shimokawa, T. Kinari, S. Shintaku, Interaction mechanism between edge dislocations and asymmetrical tilt grain boundaries investigated via quasicontinuum simulations. Phys. Rev. B 75(14), 144108 (2007)
V. Sorkin, R.S. Elliott, E.B. Tadmor, A local quasicontinuum method for 3D multilattice crystalline materials: application to shape-memory alloys. Model. Simul. Mater. Sci. Eng. 22(5), 055001 (2014)
M.O. Steinhauser, Computational Multiscale Modeling of Fluids and Solids (Springer, Berlin, 2017)
G. Sutmann, B. Steffen, A particle–particle particle-multigrid method for long-range interactions in molecular simulations. Comput. Phys. Commun. 169(1–3), 343–346 (2005)
G. Sutmann, S. Waedow, A fast wavelet based evaluation of coulomb potentials in molecular systems. Comput. Biophys. Syst. Biol. 34, 185–189 (2006)
E.B. Tadmor, M. Ortiz, R. Phillips, Quasicontinuum analysis of defects in solids. Philos. Mag. A 73(6), 1529–1563 (1996)
I.R. Vatne, E. Østby, C. Thaulow, Multiscale simulations of mixed-mode fracture in bcc-Fe. Model. Simul. Mater. Sci. Eng. 19(8), 085006 (2011)
A.M. Walker, Simulation of screw dislocations in wadsleyite. Phys. Chem. Miner. 37(5), 301–310 (2010)
A.M. Walker, J.D. Gale, B. Slater, K. Wright, Atomic scale modelling of the cores of dislocations in complex materials part 1: methodology. Phys. Chem. Chem. Phys. 7(17), 3227–3234 (2005)
D. Wolf, Reconstruction of nacl surfaces from a dipolar solution to the madelung problem. Phys. Rev. Lett. 68(22), 3315 (1992)
D. Wolf, P. Keblinski, S. Phillpot, J. Eggebrecht, Exact method for the simulation of coulombic systems by spherically truncated, pairwise r\(^{-1}\) summation. J. Chem. Phys. 110(17), 8254–8282 (1999)