Experimental investigation on photothermal properties of nanofluids for direct absorption solar thermal energy systems

Energy Conversion and Management - Tập 73 - Trang 150-157 - 2013
Qinbo He1,2, Shuangfeng Wang1, Shequan Zeng1, Zhaozhi Zheng2
1Key Lab of Enhanced Heat Transfer and Energy Conservation, The Ministry of Education, South China University of Technology, Guangzhou 510641, China
2Guangdong University Heat Pump Engineering Technology Development Center, Shunde Polytechnic, Foshan, Guangdong 528333, China

Tài liệu tham khảo

Hui, 2011, Evaluation of a seasonal storage system of solar energy for house heating using different absorption couples, Energy Convers Manage, 52, 2427, 10.1016/j.enconman.2010.12.049 McGovern, 2012, Optimal concentration and temperatures of solar thermal power plants, Energy Convers Manage, 60, 226, 10.1016/j.enconman.2011.11.032 Yang, 2012, Investigation on the performance enhancement of silicon solar cells with an assembly grating structure, Energy Convers Manage, 54, 30, 10.1016/j.enconman.2011.09.017 Groot, 2009, Integration of catalysis with storage for the design of multi-electron photochemistry devices for solar fuel, Appl Magn Reson, 37, 497, 10.1007/s00723-009-0097-0 Minardi, 1975, Performance of a black liquid flat-plate solar collector, Sol Energy, 17, 179, 10.1016/0038-092X(75)90057-2 Wagner, 1980, Radiative property measurements for India ink suspensions of varying concentration, Sol Energy, 25, 549, 10.1016/0038-092X(80)90089-4 Abdelrahman, 1979, Study of solid–gas-suspensions used for direct absorption of concentrated solar radiation, Sol Energy, 22, 45, 10.1016/0038-092X(79)90058-6 Drotning, 1978, Optical properties of solar-absorbing oxide particles suspended in a molten salt heat transfer fluid, Sol Energy, 20, 313, 10.1016/0038-092X(78)90123-8 Oishi, 2011, Process for solar grade silicon production by molten salt electrolysis using aluminum–silicon liquid alloy, J Electrochem Soc, 158, E93, 10.1149/1.3605720 Wang, 2011, Thermal design of a solar hydrogen plant with a copper–chlorine cycle and molten salt energy storage, Int J Hydrogen Energy, 36, 11258, 10.1016/j.ijhydene.2010.12.003 Mao, 2007, Review of direct absorption-type solar energy collection systems, Mater Rev, 12, 12 Iida, 2004, Radiation force induced by resonant light: from atom to nanoparticle, J Lumin, 108, 351, 10.1016/j.jlumin.2004.01.074 Hajian, 2012, Experimental study of nanofluid effects on the thermal performance with response time of heat pipe, Energy Convers Manage, 56, 63, 10.1016/j.enconman.2011.11.010 Wang, 2013, Optimal geometric structure for nanofluid-cooled microchannel heat sink under various constraint conditions, Energy Convers Manage, 65, 528, 10.1016/j.enconman.2012.08.018 He, 2012, Experimental study on thermophysical properties of nanofluids as phase-change material (PCM) in low temperature cool storage, Energy Convers Manage, 64, 199, 10.1016/j.enconman.2012.04.010 Corcione, 2011, Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids, Energy Convers Manage, 52, 789, 10.1016/j.enconman.2010.06.072 Mahian, 2013, A review of the applications of nanofluids in solar energy, Int J Heat Mass Transfer, 57, 582, 10.1016/j.ijheatmasstransfer.2012.10.037 Tyagi, 2009, Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector, J Sol Energy Eng, 131, 041004, 10.1115/1.3197562 Otanicar, 2010, Nanofluid-based direct absorption solar collector, J Renew Sustain Energy, 2, 033102, 10.1063/1.3429737 Taylor, 2011, Nanofluid optical property characterization: towards efficient direct absorption solar collectors, Nanoscale Res Lett, 6, 225, 10.1186/1556-276X-6-225 Sani, 2010, Carbon nanohorns-based nanofluids as direct sunlight absorbers, Opt Express, 18, 5179, 10.1364/OE.18.005179 Sani, 2011, Potential of carbon nanohorn-based suspensions for solar thermal collectors, Sol Energy Mater Sol Cells, 95, 2994, 10.1016/j.solmat.2011.06.011 Han, 2011, Thermal properties of carbon black aqueous nanofluids for solar absorption, Nanoscale Res Lett, 6, 457, 10.1186/1556-276X-6-457 Yousefi, 2012, An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors, Renew Energy, 39, 293, 10.1016/j.renene.2011.08.056 Yousefi, 2012, An experimental investigation on the effect of MWCNT–H2O nanofluid on the efficiency of flat-plate solar collectors, Exp Thermal Fluid Sci, 39, 207, 10.1016/j.expthermflusci.2012.01.025 Yousefi, 2012, An experimental investigation on the effect of pH variation of MWCNT–H2O nanofluid on the efficiency of a flat-plate solar collector, Sol Energy, 86, 771, 10.1016/j.solener.2011.12.003 Mu L, Zhu Q, Si L. Radiative properties of nanofluids and performance of a direct solar absorber using nanofluids. In: Proceedings of the ASME 2009 2nd micro/nanoscale heat & mass transfer international conference, MNHMT2009-18402; 2009. p. 549–53. Mercatelli, 2011, Absorption and scattering properties of carbon nanohorn-based nanofluids for direct sunlight absorbers, Nanoscale Res Lett, 6, 282, 10.1186/1556-276X-6-282 Mercatelli, 2012, Carbon nanohorn-based nanofluids: characterization of the spectral scattering albedo, Nanoscale Res Lett, 7, 96, 10.1186/1556-276X-7-96 Kameya, 2011, Enhancement of solar radiation absorption using nanoparticle suspension, Sol Energy, 85, 299, 10.1016/j.solener.2010.11.021 Mercatelli, 2011, Scattering and absorption properties of carbon nanohorn-based nanofluids for solar energy applications, J Eur Opt Soc: Rapid Publ, 6, 10.2971/jeos.2011.11025 Otanicar, 2009, Optical properties of liquids for direct absorption solar thermal energy systems, Sol Energy, 83, 969, 10.1016/j.solener.2008.12.009 Wang, 2010, Experimental study of influencing factors on transmissivity of SiO2 nanofluids, J Zhejiang Univ, 44, 1143 Zhu, 2009, Dispersion behavior and thermal conductivity characteristics of Al2O3–H2O nanofluids, Curr Appl Phys, 9, 131, 10.1016/j.cap.2007.12.008 Xuan, 2000, Heat transfer enhancement of nanofluids, Int J Heat Fluid Fl, 21, 58, 10.1016/S0142-727X(99)00067-3 Bohren, 1983 Garahan, 2007, Effective optical properties of absorbing nanoporous and nanocomposite thin films, J Appl Phys, 101, 014320, 10.1063/1.2402327 Wiscombe, 1980, Improved Mie scattering algorithms, Appl Opt, 19, 1505, 10.1364/AO.19.001505 Palik, 1998 Weber, 2003 Tan, 2006 Li, 2007, Evaluation on dispersion behavior of the aqueous copper nano-suspensions, J Colloid Interface Sci, 310, 456, 10.1016/j.jcis.2007.02.067 Kondaraju, 2011, Effect of the multi-sized nanoparticle distribution on the thermal conductivity of nanofluids, Microfluid Nanofluid, 10, 133, 10.1007/s10404-010-0653-9 Moffat, 1985, Using uncertainty analysis in the planning of an experiment, Fluids Eng, 107, 173, 10.1115/1.3242452