A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser melting
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ashby, 2000
Gibson, 1997
Lu, 1998, Heat transfer in open-cell metal foams, Acta Mater., 46, 3619, 10.1016/S1359-6454(98)00031-7
Mines, 2013, Drop weight impact behaviour of sandwich panels with metallic micro lattice cores, Int. J. Impact Eng., 60, 120, 10.1016/j.ijimpeng.2013.04.007
Fuller, 2005, Measurement and interpretation of the heat transfer coefficients of metal foams, P. I. Mech. Eng. C. J. Mec., 219, 183, 10.1243/095440605X8414
Han, 2003, A coustic absorption behaviour of an open-celled aluminium foam, J. Phys. D: Appl. Phys., 36, 294, 10.1088/0022-3727/36/3/312
Mosanenzadeh, 2015, Design and development of novel bio-based functionally graded foams for enhanced acoustic capabilities, J. Mater. Sci., 50, 1248, 10.1007/s10853-014-8681-6
Banhart, 2001, Manufacture, characterisation and application of cellular metals and metal foams, Prog. Mater. Sci., 46, 559, 10.1016/S0079-6425(00)00002-5
Wadley, 2003, Fabrication and structural performance of periodic cellular metal sandwich structures, Compos. Sci. Technol., 63, 2331, 10.1016/S0266-3538(03)00266-5
Wadley, 2006, Multifunctional periodic cellular metals, Philos. Trans. R. Soc. A, 364, 31, 10.1098/rsta.2005.1697
Wang, 2003, On the performance of truss panels with Kagom cores, Int. J. Solids Struct., 40, 6981, 10.1016/S0020-7683(03)00349-4
Wadley, 2002, Cellular Metals Manufacturing, Adv. Eng. Mater., 4, 726, 10.1002/1527-2648(20021014)4:10<726::AID-ADEM726>3.0.CO;2-Y
Wang, 2005, Design of cellular structures for optimum efficiency of heat dissipation, Struct. Multidiscip. Optim., 30, 447, 10.1007/s00158-005-0542-0
Seepersad, 2008, Multifunctional topology design of cellular material structures, Asme. J. Mech. Des., 130, 31404, 10.1115/1.2829876
Evans, 2001, The topological design of multifunctional cellular metals, Prog. Mater. Sci., 46, 309, 10.1016/S0079-6425(00)00016-5
Brackett, 2014, An error diffusion based method to generate functionally graded cellular structures, Comput. Struct., 138, 102, 10.1016/j.compstruc.2014.03.004
P. Zhang, J. Toman, Y. Yu, E. Biyikli, M. Kirca, M. Chmielus, A. To, Efficient Design-Optimization of Variable-Density Hexagonal Cellular Structure by Additive Manufacturing: Theory and Validation, J. Manuf. Sci. Eng., vol. 137, pp. 21004 – 21012, 2015.
D. Brackett, I. Ashcroft, R. Hague, Topology Optimization for Additive Manufacturing, in Solid Freeform Fabrication Symposium Proceedings, 2011.
Maskery, 2016, An investigation into reinforced and functionally graded lattice structures, J. Cell. Plast., 1
van Grunsven, 2014, Fabrication and mechanical characterisation of titanium lattices with graded porosity, Metals, 4, 401, 10.3390/met4030401
Hangai, 2012, Fabrication of functionally graded aluminum foam using aluminum alloy die castings by friction stir processing, Mat. Sci. Eng. A - Struct., 534, 716, 10.1016/j.msea.2011.11.100
Brothers, 2008, Mechanical properties of a density-graded replicated aluminum foam, Mat. Sci. Eng. A Struct., 489, 439, 10.1016/j.msea.2007.11.076
Hassani, 2012, Production of graded aluminum foams via powder space holder technique, Mater. Des., 40, 510, 10.1016/j.matdes.2012.04.024
Heim, 2015, Injection molded components with functionally graded foam structures - Procedure and essential results, J. Cell. Plast., 0, 1
Tissandier, 2014, Asymmetric microcellular composites: morphological properties, J. Cell. Plast., 50, 449, 10.1177/0021955X14528191
Zhang, 2014, Dynamic crushing behavior and energy absorption of honeycombs with density gradient, J. Sandw. Struct. Mater., 16, 125, 10.1177/1099636213509099
Mousanezhad, 2014, Impact resistance and energy absorption of regular and functionally graded hexagonal honeycombs with cell wall material strain hardening, Int. J. Mech. Sci., 89, 413, 10.1016/j.ijmecsci.2014.10.012
Maskery, 2015, Mechanical properties of ti-6al-4v selectively laser melted parts with body-centred-cubic lattices of varying cell size, Exp. Mech., 55, 1261, 10.1007/s11340-015-0021-5
Yan, 2014, Evaluation of light-weight AlSi10Mg periodic cellular lattice structures fabricated via direct metal laser sintering, J. Mater. Process Tech., 214, 856, 10.1016/j.jmatprotec.2013.12.004
Yan, 2015, Microstructure and mechanical properties of aluminium alloy cellular lattice structures manufactured by direct metal laser sintering, Mat. Sci. Eng. A - Struct., 628, 238, 10.1016/j.msea.2015.01.063
Yan, 2014, Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting, Mater. Des., 55, 533, 10.1016/j.matdes.2013.10.027
J. Brennan-Craddock, D. Brackett, R. Wildman, R. Hague, The design of impact absorbing structures for additive manufacture, J. Phys.: Conference Series, vol. 382, p. 012042, 2012.
Winter, 2014, Plate-impact loading of cellular structures formed by selective laser melting, Model Simul. Mater. Sci., 22, 025021, 10.1088/0965-0393/22/2/025021
Miltz, 1990, Energy absorption characteristics of polymeric foams used as cushioning materials, Polym. Eng. Sci., 30, 129, 10.1002/pen.760300210
Li, 2006, Compressive strain at the onset of densification of cellular solids, J. Cell. Plast., 42, 371, 10.1177/0021955X06063519
Aboulkhair, 2014, Reducing porosity in AlSi10Mg parts processed by selective laser melting, Addit. Manuf., 77, 10.1016/j.addma.2014.08.001
Maskery, 2016, Quantification and characterisation of porosity in selectively laser melted AlSi10Mg using X-ray computed tomography, Mater. Charact., 111, 193, 10.1016/j.matchar.2015.12.001
Aboulkhair, 2015, On the precipitation hardening of selective laser melted alsi10mg, Metall. Mater. Trans. A, 46, 3337, 10.1007/s11661-015-2980-7
ASTM E8/ E8M-15a, Standard Test Methods for Tension Testing of Metallic Materials.
Aboulkhair, 2016, The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment, Mat. Sci. Eng. A - Struct., 667, 139, 10.1016/j.msea.2016.04.092
Ashby, 1983, The mechanical properties of cellular solids, Met. Trans. A, 14, 1755, 10.1007/BF02645546
Hasan, 2011, Comparison on compressive behaviour of aluminium honeycomb and titanium alloy micro lattice blocks, Key Eng. Mat., 462–463, 213, 10.4028/www.scientific.net/KEM.462-463.213
Qiu, 2015, Influence of processing conditions on strut structure and compressive properties of cellular lattice structures fabricated by selective laser melting, Mat. Sci. Eng. A Struct., 628, 188, 10.1016/j.msea.2015.01.031
Yan, 2015, Ti-6Al-4V triplyperiodic minimal surface structures for bone implants fabricated via selective laser melting, J. Mech. Behav. Biomed. Mater., 51, 61, 10.1016/j.jmbbm.2015.06.024
Bael, 2011, Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures, Mat. Sci. Eng. A - Struct., 528, 7423, 10.1016/j.msea.2011.06.045
McKown, 2008, The quasi-static and blast loading response of lattice structures, Int. J. Impact Eng., 35, 795, 10.1016/j.ijimpeng.2007.10.005
Li, 2011, Energy absorption analysis of density graded aluminium foam, Int. J. Prot. Struct., 2, 333, 10.1260/2041-4196.2.3.333
Wang, 2009, Effect of heat treatments on the crushing behaviour and energy absorbing performance of aluminium alloy foams, Mater. Des., 30, 977, 10.1016/j.matdes.2008.06.058
Olurin, 2000, Deformation and fracture of aluminium foams, Mat. Sci. Eng. A - Struct., 291, 136, 10.1016/S0921-5093(00)00954-0