A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser melting

Materials Science and Engineering: A - Tập 670 - Trang 264-274 - 2016
Ian Maskery1, Nesma T. Aboulkhair1, Adedeji Aremu1, Christopher Tuck1, Ian Ashcroft1, Ricky Wildman1, Richard Hague1
1Additive Manufacturing & 3D Printing Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ashby, 2000

Gibson, 1997

Lu, 1998, Heat transfer in open-cell metal foams, Acta Mater., 46, 3619, 10.1016/S1359-6454(98)00031-7

Mines, 2013, Drop weight impact behaviour of sandwich panels with metallic micro lattice cores, Int. J. Impact Eng., 60, 120, 10.1016/j.ijimpeng.2013.04.007

Fuller, 2005, Measurement and interpretation of the heat transfer coefficients of metal foams, P. I. Mech. Eng. C. J. Mec., 219, 183, 10.1243/095440605X8414

Han, 2003, A coustic absorption behaviour of an open-celled aluminium foam, J. Phys. D: Appl. Phys., 36, 294, 10.1088/0022-3727/36/3/312

Mosanenzadeh, 2015, Design and development of novel bio-based functionally graded foams for enhanced acoustic capabilities, J. Mater. Sci., 50, 1248, 10.1007/s10853-014-8681-6

Banhart, 2001, Manufacture, characterisation and application of cellular metals and metal foams, Prog. Mater. Sci., 46, 559, 10.1016/S0079-6425(00)00002-5

Wadley, 2003, Fabrication and structural performance of periodic cellular metal sandwich structures, Compos. Sci. Technol., 63, 2331, 10.1016/S0266-3538(03)00266-5

Wadley, 2006, Multifunctional periodic cellular metals, Philos. Trans. R. Soc. A, 364, 31, 10.1098/rsta.2005.1697

Wang, 2003, On the performance of truss panels with Kagom cores, Int. J. Solids Struct., 40, 6981, 10.1016/S0020-7683(03)00349-4

Wadley, 2002, Cellular Metals Manufacturing, Adv. Eng. Mater., 4, 726, 10.1002/1527-2648(20021014)4:10<726::AID-ADEM726>3.0.CO;2-Y

Wang, 2005, Design of cellular structures for optimum efficiency of heat dissipation, Struct. Multidiscip. Optim., 30, 447, 10.1007/s00158-005-0542-0

Seepersad, 2008, Multifunctional topology design of cellular material structures, Asme. J. Mech. Des., 130, 31404, 10.1115/1.2829876

Evans, 2001, The topological design of multifunctional cellular metals, Prog. Mater. Sci., 46, 309, 10.1016/S0079-6425(00)00016-5

Brackett, 2014, An error diffusion based method to generate functionally graded cellular structures, Comput. Struct., 138, 102, 10.1016/j.compstruc.2014.03.004

P. Zhang, J. Toman, Y. Yu, E. Biyikli, M. Kirca, M. Chmielus, A. To, Efficient Design-Optimization of Variable-Density Hexagonal Cellular Structure by Additive Manufacturing: Theory and Validation, J. Manuf. Sci. Eng., vol. 137, pp. 21004 – 21012, 2015.

D. Brackett, I. Ashcroft, R. Hague, Topology Optimization for Additive Manufacturing, in Solid Freeform Fabrication Symposium Proceedings, 2011.

Maskery, 2016, An investigation into reinforced and functionally graded lattice structures, J. Cell. Plast., 1

van Grunsven, 2014, Fabrication and mechanical characterisation of titanium lattices with graded porosity, Metals, 4, 401, 10.3390/met4030401

Hangai, 2012, Fabrication of functionally graded aluminum foam using aluminum alloy die castings by friction stir processing, Mat. Sci. Eng. A - Struct., 534, 716, 10.1016/j.msea.2011.11.100

Brothers, 2008, Mechanical properties of a density-graded replicated aluminum foam, Mat. Sci. Eng. A Struct., 489, 439, 10.1016/j.msea.2007.11.076

Hassani, 2012, Production of graded aluminum foams via powder space holder technique, Mater. Des., 40, 510, 10.1016/j.matdes.2012.04.024

Heim, 2015, Injection molded components with functionally graded foam structures - Procedure and essential results, J. Cell. Plast., 0, 1

Tissandier, 2014, Asymmetric microcellular composites: morphological properties, J. Cell. Plast., 50, 449, 10.1177/0021955X14528191

Zhang, 2014, Dynamic crushing behavior and energy absorption of honeycombs with density gradient, J. Sandw. Struct. Mater., 16, 125, 10.1177/1099636213509099

Mousanezhad, 2014, Impact resistance and energy absorption of regular and functionally graded hexagonal honeycombs with cell wall material strain hardening, Int. J. Mech. Sci., 89, 413, 10.1016/j.ijmecsci.2014.10.012

Maskery, 2015, Mechanical properties of ti-6al-4v selectively laser melted parts with body-centred-cubic lattices of varying cell size, Exp. Mech., 55, 1261, 10.1007/s11340-015-0021-5

Yan, 2014, Evaluation of light-weight AlSi10Mg periodic cellular lattice structures fabricated via direct metal laser sintering, J. Mater. Process Tech., 214, 856, 10.1016/j.jmatprotec.2013.12.004

Yan, 2015, Microstructure and mechanical properties of aluminium alloy cellular lattice structures manufactured by direct metal laser sintering, Mat. Sci. Eng. A - Struct., 628, 238, 10.1016/j.msea.2015.01.063

Yan, 2014, Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting, Mater. Des., 55, 533, 10.1016/j.matdes.2013.10.027

J. Brennan-Craddock, D. Brackett, R. Wildman, R. Hague, The design of impact absorbing structures for additive manufacture, J. Phys.: Conference Series, vol. 382, p. 012042, 2012.

Winter, 2014, Plate-impact loading of cellular structures formed by selective laser melting, Model Simul. Mater. Sci., 22, 025021, 10.1088/0965-0393/22/2/025021

Miltz, 1990, Energy absorption characteristics of polymeric foams used as cushioning materials, Polym. Eng. Sci., 30, 129, 10.1002/pen.760300210

Li, 2006, Compressive strain at the onset of densification of cellular solids, J. Cell. Plast., 42, 371, 10.1177/0021955X06063519

Aboulkhair, 2014, Reducing porosity in AlSi10Mg parts processed by selective laser melting, Addit. Manuf., 77, 10.1016/j.addma.2014.08.001

Maskery, 2016, Quantification and characterisation of porosity in selectively laser melted AlSi10Mg using X-ray computed tomography, Mater. Charact., 111, 193, 10.1016/j.matchar.2015.12.001

Aboulkhair, 2015, On the precipitation hardening of selective laser melted alsi10mg, Metall. Mater. Trans. A, 46, 3337, 10.1007/s11661-015-2980-7

ASTM E8/ E8M-15a, Standard Test Methods for Tension Testing of Metallic Materials.

Aboulkhair, 2016, The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment, Mat. Sci. Eng. A - Struct., 667, 139, 10.1016/j.msea.2016.04.092

Ashby, 1983, The mechanical properties of cellular solids, Met. Trans. A, 14, 1755, 10.1007/BF02645546

Hasan, 2011, Comparison on compressive behaviour of aluminium honeycomb and titanium alloy micro lattice blocks, Key Eng. Mat., 462–463, 213, 10.4028/www.scientific.net/KEM.462-463.213

Qiu, 2015, Influence of processing conditions on strut structure and compressive properties of cellular lattice structures fabricated by selective laser melting, Mat. Sci. Eng. A Struct., 628, 188, 10.1016/j.msea.2015.01.031

Yan, 2015, Ti-6Al-4V triplyperiodic minimal surface structures for bone implants fabricated via selective laser melting, J. Mech. Behav. Biomed. Mater., 51, 61, 10.1016/j.jmbbm.2015.06.024

Bael, 2011, Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures, Mat. Sci. Eng. A - Struct., 528, 7423, 10.1016/j.msea.2011.06.045

McKown, 2008, The quasi-static and blast loading response of lattice structures, Int. J. Impact Eng., 35, 795, 10.1016/j.ijimpeng.2007.10.005

Li, 2011, Energy absorption analysis of density graded aluminium foam, Int. J. Prot. Struct., 2, 333, 10.1260/2041-4196.2.3.333

Wang, 2009, Effect of heat treatments on the crushing behaviour and energy absorbing performance of aluminium alloy foams, Mater. Des., 30, 977, 10.1016/j.matdes.2008.06.058

Olurin, 2000, Deformation and fracture of aluminium foams, Mat. Sci. Eng. A - Struct., 291, 136, 10.1016/S0921-5093(00)00954-0

Maiti, 1984, Deformation and energy absorption diagrams for cellular solids, Acta Met., 32, 1963, 10.1016/0001-6160(84)90177-9