Resting‐state functional connectivity and nicotine addiction: prospects for biomarker development

Annals of the New York Academy of Sciences - Tập 1349 Số 1 - Trang 64-82 - 2015
John R. Fedota1, Elliot A. Stein1
1Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland

Tóm tắt

Given conceptual frameworks of addiction as a disease of intercommunicating brain networks, examinations of network interactions may provide a holistic characterization of addiction‐related dysfunction. One such methodological approach is the examination of resting‐state functional connectivity, which quantifies correlations in low‐frequency fluctuations of the blood oxygen level–dependent magnetic resonance imaging signal between disparate brain regions in the absence of task performance. Here, evidence of differentiated effects of chronic nicotine exposure, which reduces the efficiency of network communication across the brain, and acute nicotine exposure, which increases connectivity within specific limbic circuits, is discussed. Several large‐scale resting networks, including the salience, default, and executive control networks, have also been implicated in nicotine addiction. The dynamics of connectivity changes among and between these large‐scale networks during nicotine withdrawal and satiety provide a heuristic framework with which to characterize the neurobiological mechanism of addiction. The ability to simultaneously quantify effects of both chronic (trait) and acute (state) nicotine exposure provides a platform to develop a neuroimaging‐based addiction biomarker. While such development remains in its early stages, evidence of coherent modulations in resting‐state functional connectivity at various stages of nicotine addiction suggests potential network interactions on which to focus future addiction biomarker development.

Từ khóa


Tài liệu tham khảo

10.1016/S2213-2600(14)70294-2

10.1007/s40263-015-0243-1

10.1038/npp.2009.110

10.1002/mrm.1910340409

10.1073/pnas.0811168106

10.1016/j.tics.2010.04.004

10.1016/j.euroneuro.2010.03.008

10.1016/j.brainres.2008.08.028

10.1073/pnas.0601417103

10.1016/j.neuroimage.2009.10.080

10.1016/j.neuroimage.2012.03.027

10.1016/j.neuroimage.2007.08.008

10.1073/pnas.1113148109

10.1002/hbm.22136

10.1002/hbm.20069

10.1371/journal.pone.0013311

10.1371/journal.pone.0001794

10.1093/cercor/bhp270

10.1016/S0197-2456(01)00153-2

10.1016/j.neuroimage.2011.07.044

10.1016/j.neuroimage.2011.10.018

10.1016/j.neuroimage.2011.12.063

10.1016/j.neuroimage.2008.09.036

10.1016/j.neuroimage.2009.05.005

10.1093/cercor/bhr099

10.1016/j.neuroimage.2007.07.037

10.1016/j.neuroimage.2015.05.015

10.1016/j.neuron.2014.09.007

10.1016/j.neuroimage.2009.10.003

10.1002/9781118472415.ch20

10.1016/j.tics.2013.09.016

Sporns O., 2011, Networks of the brain

10.1146/annurev-clinpsy-040510-143934

Mckeown M.J.et al.1998.Analysis of fMRI data by blind separation into independent spatial components.Hum. Brain Mapp.6:160–188.

10.1073/pnas.0905267106

10.1073/pnas.98.2.676

10.1073/pnas.0135058100

10.1073/pnas.0308627101

10.1016/j.neuroimage.2011.05.028

10.1073/pnas.0504136102

10.1073/pnas.0701519104

10.1523/JNEUROSCI.5587-06.2007

10.1073/pnas.0800005105

10.1523/JNEUROSCI.3146-13.2013

10.1073/pnas.1200506109

10.1038/nature05758

10.1016/j.biopsych.2011.02.003

10.1016/j.biopsych.2007.06.025

10.1016/j.neuroimage.2011.03.048

10.1016/j.tics.2011.08.003

10.1016/j.tics.2013.09.012

10.1016/j.neubiorev.2007.02.005

10.1016/j.neuroimage.2010.04.251

10.1016/j.neuroimage.2013.04.074

Baker T.B., 2007, Time to first cigarette in the morning as an index of ability to quit smoking: implications for nicotine dependence, Nicotine Tob. Res., 9, S555

10.1016/j.amepre.2010.11.016

10.1111/j.1360-0443.2010.03226.x

10.1001/jamapsychiatry.2014.138

10.1007/s11920-014-0513-5

10.1001/jamapsychiatry.2013.1141

10.1021/acschemneuro.5b00067

Reske M., 2011, Neuroimaging in Addiction, 321

10.1007/s11065-007-9035-9

10.1176/appi.ajp.159.10.1642

10.1038/nrn3119

10.1016/j.biopsych.2012.06.034

10.1016/j.neuropharm.2013.02.015

10.1016/j.biopsych.2014.12.021

10.1001/archgenpsychiatry.2009.2

10.1007/s00213-013-3018-8

10.1016/j.neuroimage.2013.05.019

10.1093/schbul/sbs149

10.1111/j.1601-183X.2011.00689.x

10.1016/j.schres.2012.08.033

10.1176/ajp.153.3.321

10.1016/j.neubiorev.2005.02.006

10.1016/j.biopsych.2013.03.017

10.1093/schbul/sbp089

Lyons M.J.et al.2002.Nicotine and familial vulnerability to schizophrenia: a discordant twin study.J. Abnorm. Psychol.111:687–693.

10.1002/hbm.22672

Lin F., 2014, Altered brain functional networks in heavy smokers, Addict. Biol., 36, 872

10.1016/j.drugalcdep.2012.02.020

10.1038/npp.2015.9

10.1007/s00213-008-1436-9

10.1016/j.neuroimage.2003.12.030

10.1007/s00213-015-3881-6

10.1523/JNEUROSCI.5129-06.2007

10.1093/cercor/bhn226

10.1503/jpn.130052

10.1186/1744-9081-8-44

10.1111/j.1369-1600.2011.00359.x

10.1002/jmri.10416

10.1016/j.addbeh.2014.01.006

10.1371/journal.pone.0104102

10.1038/sj.npp.1301618

10.1016/j.pbb.2004.03.026

10.1037/0022-006X.67.4.555

10.2165/00023210-200115050-00005

10.1007/s00213-010-1848-1

10.1016/j.neuroimage.2012.01.117

10.1007/s00213-011-2221-8

10.1016/j.neuroimage.2012.06.079

10.3389/fnhum.2015.00116

10.1126/science.288.5472.1835

10.1523/JNEUROSCI.4854-12.2013

10.1016/j.neuroimage.2009.11.020

10.1080/14622200701188927

10.1371/journal.pone.0088228

10.1016/j.pscychresns.2013.07.005

10.1006/nimg.1997.0291

10.1093/scan/nss055

10.1111/adb.12124

10.1038/npp.2013.134

10.1371/journal.pone.0102828

10.1016/j.biopsych.2013.01.035

10.1001/jamapsychiatry.2013.4091

10.1371/journal.pone.0059331

10.1038/nrn2555

10.1016/j.neuroimage.2010.08.063

10.1001/archinte.166.15.1571

10.1001/jamapsychiatry.2015.1

10.1016/j.neuroimage.2010.06.066

10.1111/adb.12242

Pariyadath V., 2016, Mesocorticolimbic circuitry in addiction: insights from resting state functional connectivity, Progress in Brain Research: Neuroscience for Addiction Medicine: From Prevention to Rehabilitation

10.1016/j.neuroimage.2012.10.013

10.1016/j.psc.2012.03.010

10.1093/jnci/djr237

10.1176/appi.ajp.2012.11101545

10.1073/pnas.1004745107

10.1016/j.pscychresns.2013.03.003

10.1162/jocn_a_00802

10.3389/fpsyt.2013.00137

10.1111/nyas.12479

10.1038/clpt.2013.57

10.1097/WCO.0b013e328306f2c5

10.1038/npp.2015.114

10.3109/00952990.2013.847446

10.1093/cercor/bhs190

10.1523/JNEUROSCI.5062-08.2009

10.1038/nrn2575

10.1038/nn.3470

10.3389/fnhum.2014.00425

10.1523/JNEUROSCI.2636-14.2015

10.1152/jn.00270.2012

10.1016/j.neuron.2014.10.047

10.1016/j.biopsych.2013.05.014

10.1016/j.neuroimage.2008.11.007

10.1371/journal.pone.0014277