Mutual enhancing effects of the σ-hole interactions and halogen/hydrogen-bonded interactions in the iodine-ylide containing complexes

Structural Chemistry - Tập 27 - Trang 927-937 - 2015
Ting Lang1, Xueying Zhang1, Lingpeng Meng1, Yanli Zeng1
1Institute of Computational Quantum Chemistry, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, People’s Republic of China

Tóm tắt

The region of positive electrostatic potentials (σ-hole) has been found along the extension of the C–I bond in the iodine-ylide CH2IH, which suggests that the iodine-ylide could interact with nucleophiles to form weak, directional noncovalent interactions. MP2 calculations confirmed that the I···N σ-hole interaction exists in the CH2IH···NCX (X = H, F, Cl, Br, I) bimolecular complexes. The NCCl···CH2IH···NCX (X = H, F, Cl, Br, I) termolecular complexes were constructed to investigate the weakly bonded σ-hole interactions to be strengthened by Cl···C halogen bond. And then, the NCY···CH2IH···NCCl (Y = H, F, Cl, Br, I) termolecular complexes were designed to investigate the enhancing effects of the I···N σ-hole interaction on the Y···C halogen/hydrogen-bonded interactions. Accompany with the mutual enhancing processes of the σ-hole interactions and halogen/hydrogen-bonded interactions in the iodine-ylide containing termolecular complexes, both the I···N σ-hole interactions and Y···C halogen/hydrogen-bonded interactions become more polarizable.

Tài liệu tham khảo

Buckingham AD, Fowler PW, Hutson JM (1988) Theoretical studies of van der Waals molecules and intermolecular forces. Chem Rev 88:963–988 Metrangolo P, Pilati T, Resnati G (2006) Halogen bonding and other noncovalent interactions involving halogens: a terminology issue. CrystEngComm 8:946–947 Mohajeri A, Alipour M, Mousaee M (2011) Halogen–hydride interaction between Z–X (Z = CN, NC; X = F, Cl, Br) and H-Mg-Y (Y = H, F, Cl, Br, CH3). J Phys Chem A 115:4457–4466 Metrangolo P, Resnati G, Pilati T, Liantonio R, Meyer F (2007) Engineering functional materials by halogen bonding. J Polym Sci Part A Polym Chem 45:1–15 Bilewicz E, Rybarczyk-Pirek AJ, Dubis AT, Grabowski SJ (2007) Halogen bonding in crystal structure of 1-methylpyrrol-2-yl trichloromethyl ketone. J Mol Struct 829:208–211 Bertani R, Chaux F, Gleria M, Metrangolo P, Milani R, Pilati T, Resnati G, Sansotera M, Venzo A (2007) Supramolecular rods via halogen bonding-based self-assembly of fluorinated phosphazene nanopillars. Inorg Chim Acta 360:1191–1199 Bruce DW (2008) Halogen-bonded liquid crystals. Struct Bond 126:161–180 Han N, Zeng Y, Li X, Zheng S, Meng L (2013) Enhancing effects of electron-withdrawing groups and metallic ions on halogen bonding in the YC6F4X…C2H8N2 (X = Cl, Br, I; Y = F, CN, NO2, LiNC+, NaNC+) complex. J Phys Chem A 117:12959–12968 Li QZ, Li R, Liu XF, Li WZ, Cheng JB (2012) Pnicogen–hydride interaction between FH2X (X = P and As) and HM (M = ZnH, BeH, MgH, Li, and Na). J Phys Chem A 116:2547–2553 Huggins ML (1960) The hydrogen bond (Pimentel, George C.; McClellan, Aubrey L.). J Chem Educ 37:A754–A756 Marsh RE (1960) The hydrogen bond. Arch Biochem Biophys 91:155 Li QZ, Li R, Liu XF, Li WZ, Cheng JB (2012) Concerted interaction between pnicogen and halogen bonds in XCl–FH2P–NH3 (X = F, OH, CN, NC, and FCC). ChemPhysChem 13:1205–1212 Alkorta I, Blanco F, Deyà PM, Elguero J, Estarellas C, Frontera A, Quiñonero D (2009) Cooperativity in multiple unusual weak bonds. Theor Chem Acc 126:1–14 Brinck T, Murray JS, Politzer P (1992) Surface electrostatic potentials of halogenated methanes as indicators of directional intermolecular interactions. Int J Quantum Chem 44:57–64 Auffinger P, Hays FA, Westhof E, Ho PS (2004) Halogen bonds in biological molecules. Proc Natl Acad Sci U S A 101:16789–16794 Politzer P, Murray JS, Clark T (2013) Halogen bonding and other σ-hole interactions: a perspective. Phys Chem Chem Phys 15:11178–11189 Kantsadi AL, Hayes JM, Manta S, Skamnaki VT, Kiritsis C, Psarra AM, Koutsogiannis Z, Dimopoulou A, Theofanous S, Nikoleousakos N, Zoumpoulakis P, Kontou M, Papadopoulos G, Zographos SE, Komiotis D, Leonidas DD (2012) The σ-hole phenomenon of halogen atoms forms the structural basis of the strong inhibitory potency of C5 halogen substituted glucopyranosyl nucleosides towards glycogen phosphorylase b. ChemMedChem 7:722–732 Clark T, Hennemann M, Murray JS, Politzer P (2007) Halogen bonding: the σ-hole. In: Proceedings of “Modeling interactions in biomolecules II”, Prague, September 5th–9th, 2005. J Mol Model 13:291–296 Murray JS, Lane P, Politzer P (2009) Expansion of the σ-hole concept. J Mol Model 15:723–729 Politzer P, Lane P, Concha MC, Ma Y, Murray JS (2007) An overview of halogen bonding. J Mol Model 13:305–311 Politzer P, Murray JS, Concha MC (2007) Halogen bonding and the design of new materials: organic bromides, chlorides and perhaps even fluorides as donors. J Mol Model 13:643–650 Murray JS, Lane P, Clark T, Politzer P (2007) σ-hole bonding: molecules containing group VI atoms. J Mol Model 13:1033–1038 Murray JS, Lane P, Politzer P (2007) A predicted new type of directional noncovalent interaction. Int J Quantum Chem 107:2286–2292 Murray JS, Riley KE, Politzer P, Clark T (2010) Directional weak intermolecular interactions: σ-hole bonding. Aust J Chem 63:1598–1607 Murray JS, Lane P, Clark T, Riley KE, Politzer P (2012) σ-holes, π-holes and electrostatically-driven interactions. J Mol Model 18:541–548 Solimannejad M, Ramezani V, Trujillo C, Alkorta I, Sanchez-Sanz G, Elguero J (2012) Competition and interplay between σ-hole and π-hole interactions: a computational study of 1:1 and 1:2 complexes of nitryl halides (O2NX) with ammonia. J Phys Chem A 116:5199–5206 Ji J, Zeng Y, Zhang X, Zheng S, Meng L (2013) Discovery of σ-hole interactions involving ylides. J Mol Model 19:4887–4895 Ji J, Meng D, Zhang X, Meng L, Zeng Y (2014) Enhancing effects of hydrogen/halogen bonds on σ-hole interactions involving ylide. J Mol Model 20:2282–2289 Adam W, Gogonas EP, Hadjiarapoglou LP (2003) Alkenyl C–H insertion of a β-disulfone iodonium ylide into flavones. Tetrahedron 59:7929–7934 Yang YD, Azuma A, Tokunaga E, Yamasaki M, Shiro M, Shibata N (2013) Trifluoromethanesulfonyl hypervalent iodonium ylide for copper-catalyzed trifluoromethylthiolation of enamines, indoles, and β-keto esters. J Am Chem Soc 135:8782–8785 Politzer P, Murray JS, Clark T (2010) Halogen bonding: an electrostatically-driven highly directional noncovalent interaction. Phys Chem Chem Phys 12:7748–7757 Lang T, Li X, Meng L, Zheng S, Zeng Y (2014) The cooperativity between the σ-hole and π-hole interactions in the ClO···XONO2/XONO···NH3 (X = Cl, Br, I) complexes. Struct Chem 26:213–221 Krishnan R, Pople JA (1978) Approximate fourth-order perturbation theory of the electron correlation energy. Int J Quantum Chem 14:91–100 Møller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46:618–622 Bartlett RJ (1975) Many-body perturbation theory applied to electron pair correlation energies. I. Closed-shell first-row diatomic hydrides. J Chem Phys 62:3258–3268 Peterson KA, Puzzarini C (2005) Systematically convergent basis sets for transition metals. II. Pseudopotential-based correlation consistent basis sets for the group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) elements. Theor Chem Acc 114:283–296 Peterson KA, Figgen D, Goll E, Stoll H, Dolg M (2003) Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16–18 elements. J Chem Phys 119:11113–11123 Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023 Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2004) Gaussian 03. Gaussian Inc, Wallingford, CT Bulat FA, Toro-Labbe A, Brinck T, Murray JS, Politzer P (2010) Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J Mol Model 16:1679–1691 Bader RFW (1990) Atoms in Molecules: A Quantum Theory. Oxford University Press, Oxford Han N, Zeng Y, Sun C, Li X, Sun Z, Meng L (2014) N···I halogen bonding interactions: influence of Lewis bases on their strength and characters. J Phys Chem A 118:7058–7065 Zeng Y, Wu W, Li X, Zheng S, Meng L (2013) Influence of the Li···π interaction on the H/X···pi interactions in HOLi···C6H6···HOX/XOH (X = F, Cl, Br, I) complexes. ChemPhysChem 14:1591–1600 Keith TA (2012) AIMALL. version 13.02.26 ed., USA Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592 Popelier PLA (2000) Atoms in molecules: an introduction. Pearson Education Limited, Essex, U.K Bone RGA, Bader RFW (1996) Identifying and analyzing intermolecular bonding interactions in van der Waals molecules. J Chem Phys 100:10892–10911 Cremer D, Kraka E (1984) Chemical bonds without bonding electron density ? Does the difference electron-density analysis suffice for a description of the chemical bond? Angew Chem Int Ed Engl 23:627–628 Daudel R (1952) Remarque sur la rôle de l’indiscernabilité des électrons enchimie théorique. Compt Rend Acad Sci 235:886–888 Roux M, Daudel R (1955) Effet de la liaison chimique sur la densité electronique.Cas de la molécule Li2. Compt Rend Acad Sci 240:90–92 Roux M, Besnainou S, Daudel R (1956) Recherches sur la répartition de la densité. J Chem Phys 53:218–221 Politzer P, Murray JS, Clark T (2015) Mathematical modeling and physical reality in noncovalent interactions. J Mol Model 21:52–61