Biofuel types and membrane separation
Tóm tắt
Global warming induced by greenhouse gases is major issue worldwide. There is therefore a need to develop renewable sources of energy, such as biofuels. Here, we review the various types of biofuels such as biodiesel, bioethanol, biomethane, hydrotreated vegetable oils and fats, and lignocellulosic-based fuels. First, second, and third generations of biofuels are compared in terms of economics, environmental aspects and energy yield. Economically, raw materials account for 60–75% of the final price of produced biofuels. The high cost of biodiesel compared to the lower price of diesel fuel is a major challenge toward commercializing biodiesel production from vegetable oils. Environmentally, biofuels can reduce carbon emissions and are more biodegradable compared to fossil fuels. For instance, biodiesel and diesel fuels are degraded by 95% and 40%, respectively, during one month in water. Among liquid biofuels, biodiesel has the best energy yield, such that the amount of net biodiesel energy production is more than three times than that of diesel fuel. We also review membrane technologies for the purification and separation of biofuels such as bioethanol, biobutanol, biodiesel, and biogas. Commonly used membrane processes are ultrafiltration, microfiltration, nanofiltration, pervaporation, membrane distillation and reverse osmosis. Reverse osmosis is used for water treatment due to the very small pore size of membranes, which allow the water molecules to get through. Membrane bioreactors can be used for wastewater treatment with a combination of ultrafiltration and reverse osmosis. Ultrafiltration and nanofiltration membranes have applications in the production of biomass from olive mill wastewaters. Pervaporation and membrane distillation are efficient in the third generation of bioethanol production plants.
Tài liệu tham khảo
Ae O, Martin BH, Maria G (2017) Transport biofuels in global energy–economy modelling—a review of comprehensive energy systems assessment approaches. GCB Bioenergy 9:1168–1180. https://doi.org/10.1111/gcbb.12431
Atadashi IM, Aroua MK, Abdul Aziz AR, Sulaiman NMN (2011) Membrane biodiesel production and refining technology: a critical review. Renew Sustain Energy Rev 15:5051–5062. https://doi.org/10.1016/j.rser.2011.07.051
Azimi A, Azari A, Rezakazemi M, Ansarpour M (2017) Removal of heavy metals from industrial wastewaters: a review. ChemBioEng Rev 4:37–59. https://doi.org/10.1002/cben.201600010
Babaei A, Mehrnia MR, Shayegan J, Sarrafzadeh M-H (2016) Comparison of different trophic cultivations in microalgal membrane bioreactor containing N-riched wastewater for simultaneous nutrient removal and biomass production. Process Biochem 51:1568–1575. https://doi.org/10.1016/j.procbio.2016.06.011
Baheri B, Shahverdi M, Rezakazemi M, Motaee E, Mohammadi T (2014) Performance of PVA/NaA mixed matrix membrane for removal of water from ethylene glycol solutions by pervaporation. Chem Eng Commun 202:316–321. https://doi.org/10.1080/00986445.2013.841149
Baroutian S, Aroua MK, Raman AAA, Sulaiman NMN (2010) Methanol recovery during transesterification of palm oil in a TiO2/Al2O3 membrane reactor: experimental study and neural network modeling. Sep Purif Technol 76:58–63. https://doi.org/10.1016/j.seppur.2010.09.020
Baroutian S, Aroua MK, Raman AAA, Sulaiman NM (2011) A packed bed membrane reactor for production of biodiesel using activated carbon supported catalyst. Biores Technol 102:1095–1102. https://doi.org/10.1016/j.biortech.2010.08.076
Basu S, Khan AL, Cano-Odena A, Liu C, Vankelecom IF (2010) Membrane-based technologies for biogas separations. Chem Soc Rev 39:750–768. https://doi.org/10.1039/b817050a
Borisov I, Golubev G, Vasilevsky V, Volkov A, Volkov V (2017) Novel hybrid process for bio-butanol recovery: thermopervaporation with porous condenser assisted by phase separation. J Membr Sci 523:291–300. https://doi.org/10.1016/j.memsci.2016.10.009
Bos A, Pünt I, Wessling M, Strathmann H (1998) Plasticization-resistant glassy polyimide membranes for CO2/CO4 separations. Sep Purif Technol 14:27–39. https://doi.org/10.1016/S1383-5866(98)00057-4
Canakci M, Sanli H (2008) Biodiesel production from various feedstocks and their effects on the fuel properties. J Ind Microbiol Biotechnol 35:431–441. https://doi.org/10.1007/s10295-008-0337-6
Cannilla C, Bonura G, Frusteri F (2017) Potential of pervaporation and vapor separation with water selective membranes for an optimized production of biofuels—a review. Catalysts 7:187. https://doi.org/10.3390/catal7060187
Cao C, Chung T-S, Liu Y, Wang R, Pramoda K (2003) Chemical cross-linking modification of 6FDA-2, 6-DAT hollow fiber membranes for natural gas separation. J Membr Sci 216:257–268. https://doi.org/10.1016/S0376-7388(03)00080-2
Cao P, Dubé MA, Tremblay AY (2008a) High-purity fatty acid methyl ester production from canola, soybean, palm, and yellow grease lipids by means of a membrane reactor. Biomass Bioenerg 32:1028–1036. https://doi.org/10.1016/j.biombioe.2008.01.020
Cao P, Dubé MA, Tremblay AY (2008b) Methanol recycling in the production of biodiesel in a membrane reactor. Fuel 87:825–833. https://doi.org/10.1016/j.fuel.2007.05.048
Castanheiro J, Ramos A, Fonseca I, Vital J (2006) Esterification of acetic acid by isoamylic alcohol over catalytic membranes of poly (vinyl alcohol) containing sulfonic acid groups. Appl Catal A 311:17–23. https://doi.org/10.1016/j.apcata.2006.05.039
Chmielewski D, Ziaka Z, Manousiouthakis V (1999) Conversion targets for plug flow membrane reactors. Chem Eng Sci 54:2979–2984. https://doi.org/10.1016/S0009-2509(98)00361-3
Cicci A, Stoller M, Bravi M (2013) Microalgal biomass production by using ultra-and nanofiltration membrane fractions of olive mill wastewater. Water Res 47:4710–4718. https://doi.org/10.1016/j.watres.2013.05.030
Coronas J, Santamarıa J (1999) Catalytic reactors based on porous ceramic membranes. Catal Today 51:377–389. https://doi.org/10.1016/S0920-5861(99)00090-5
Dashti A, Harami HR, Rezakazemi M (2018) Accurate prediction of solubility of gases within H2-selective nanocomposite membranes using committee machine intelligent system. Int J Hydrogen Energy 43:6614–6624. https://doi.org/10.1016/j.ijhydene.2018.02.046
Dubé M, Tremblay A, Liu J (2007) Biodiesel production using a membrane reactor. Biores Technol 98:639–647. https://doi.org/10.1016/j.biortech.2006.02.019
Farno E, Rezakazemi M, Mohammadi T, Kasiri N (2014) Ternary gas permeation through synthesized PDMS membranes: experimental and CFD simulation basedon sorption-dependent system using neural network model. Polym Eng Sci 54:215–226. https://doi.org/10.1002/pen.23555
Foroutan R, Esmaeili H, Abbasi M, Rezakazemi M, Mesbah M (2017) Adsorption behavior of Cu(II) and Co(II) using chemically modified marine algae. Environ Technol. https://doi.org/10.1080/09593330.2017.1365946
Friedlingstein P, Andrew RM, Rogelj J, Peters GP, Canadell JG, Knutti R, Luderer G, Raupach MR, Schaeffer M, van Vuuren DP, Le Quere C (2014) Persistent growth of CO2 emissions and implications for reaching climate targets. Nat Geosci 7:709–715. https://doi.org/10.1038/ngeo2248
Friess K, Lanč M, Pilnáček K, Fíla V, Vopička O, Sedláková Z, Cowan MG, McDanel WM, Noble RD, Gin DL (2017) CO2/CH4 separation performance of ionic-liquid-based epoxy-amine ion gel membranes under mixed feed conditions relevant to biogas processing. J Membr Sci 528:64–71. https://doi.org/10.1016/j.memsci.2017.01.016
Gao F, Li C, Yang Z-H, Zeng G-M, Feng L-J, J-z Liu, Liu M, H-w Cai (2016) Continuous microalgae cultivation in aquaculture wastewater by a membrane photobioreactor for biomass production and nutrients removal. Ecol Eng 92:55–61. https://doi.org/10.1016/j.ecoleng.2016.03.046
Gao L, Alberto M, Gorgojo P, Szekely G, Budd PM (2017) High-flux PIM-1/PVDF thin film composite membranes for 1-butanol/water pervaporation. J Membr Sci 529:207–214. https://doi.org/10.1016/j.memsci.2017.02.008
Gao F, Peng Y-Y, Li C, Cui W, Yang Z-H, Zeng G-M (2018) Coupled nutrient removal from secondary effluent and algal biomass production in membrane photobioreactor (MPBR): effect of HRT and long-term operation. Chem Eng J 335:169–175. https://doi.org/10.1016/j.cej.2017.10.151
Guerreiro L, Castanheiro J, Fonseca I, Martin-Aranda R, Ramos A, Vital J (2006) Transesterification of soybean oil over sulfonic acid functionalised polymeric membranes. Catal Today 118:166–171. https://doi.org/10.1016/j.cattod.2005.12.012
Guerreiro L, Pereira P, Fonseca I, Martin-Aranda R, Ramos A, Dias J, Oliveira R, Vital J (2010) PVA embedded hydrotalcite membranes as basic catalysts for biodiesel synthesis by soybean oil methanolysis. Catal Today 156:191–197. https://doi.org/10.1016/j.cattod.2010.04.046
Gugliuzza A, Basile A (2014) 3—Membrane processes for biofuel separation: an introduction. In: Gugliuzza A, Basile A (eds) Membranes for clean and renewable power applications. Woodhead Publishing, Cambridge, pp 65–103. https://doi.org/10.1533/9780857098658.2.65
Guiver MD, Robertson GP, Dai Y, Bilodeau F, Kang YS, Lee KJ, Jho JY, Won J (2002) Structural characterization and gas-transport properties of brominated matrimid polyimide. J Polym Sci A Polym Chem 40:4193–4204. https://doi.org/10.1002/pola.10516
Hajilary N, Shahi A, Rezakazemi M (2018a) Evaluation of socio-economic factors on CO2 emissions in Iran: factorial design and multivariable methods. J Clean Prod 189:108–115. https://doi.org/10.1016/j.jclepro.2018.04.067
Hajilary N, Shahi A, Rezakazemi M (2018b) Evaluation of socio-economic factors on CO2 emissions in Iran: factorial design and multivariable methods. J Clean Prod. https://doi.org/10.1016/j.jclepro.2018.04.067
Hess S, Staudt C (2007) Variation of esterfication conditions to optimize solid-state crosslinking reaction of DABA-containing copolyimide membranes for gas separations. Desalination 217:8–16. https://doi.org/10.1016/j.desal.2007.01.011
Hosseini SS, Teoh MM, Chung TS (2008) Hydrogen separation and purification in membranes of miscible polymer blends with interpenetration networks. Polymer 49:1594–1603. https://doi.org/10.1016/j.polymer.2008.01.052
Hu MZ, Engtrakul C, Bischoff BL, Jang GG, Theiss TJ, Davis MF (2017) Superhydrophobic and superhydrophilic surface-enhanced separation performance of porous inorganic membranes for biomass-to-biofuel conversion applications. Sep Sci Technol 52:528–543. https://doi.org/10.1080/01496395.2016.1260144
Huang H-J, Ramaswamy S, Tschirner U, Ramarao B (2008) A review of separation technologies in current and future biorefineries. Sep Purif Technol 62:1–21. https://doi.org/10.1016/j.seppur.2007.12.011
Ikegami T, Kitamoto D, Negishi H, Haraya K, Matsuda H, Nitanai Y, Koura N, Sano T, Yanagishita H (2003) Drastic improvement of bioethanol recovery using a pervaporation separation technique employing a silicone rubber-coated silicalite membrane. J Chem Technol Biotechnol 78:1006–1010. https://doi.org/10.1002/jctb.897
Iovane P, Nanna F, Ding Y, Bikson B, Molino A (2014) Experimental test with polymeric membrane for the biogas purification from CO2 and H2S. Fuel 135:352–358. https://doi.org/10.1016/j.fuel.2014.06.060
Ismail A, Lorna W (2003) Suppression of plasticization in polysulfone membranes for gas separations by heat-treatment technique. Sep Purif Technol 30:37–46. https://doi.org/10.1016/S1383-5866(02)00097-7
Kamiya Y, Mizoguchi K, Hirose T, Naito Y (1989) Sorption and dilation in poly (ethyl methacrylate)–carbon dioxide system. J Polym Sci B Polym Phys 27:879–892. https://doi.org/10.1002/polb.1989.090270412
Knothe G, Dunn RO, Bagby MO (1997) Biodiesel: the use of vegetable oils and their derivatives as alternative diesel fuels. ACS Publications. https://doi.org/10.1021/bk-1997-0666.ch010
Koutinas A, Kanellaki M, Bekatorou A, Kandylis P, Pissaridi K, Dima A, Boura K, Lappa K, Tsafrakidou P, Stergiou P-Y, Foukis A, Gkini OA, Papamichael EM (2016) Economic evaluation of technology for a new generation biofuel production using wastes. Biores Technol 200:178–185. https://doi.org/10.1016/j.biortech.2015.09.093
Le NL, Nunes SP (2016) Materials and membrane technologies for water and energy sustainability. Sustain Mater Technol 7:1–28. https://doi.org/10.1016/j.susmat.2016.02.001
Lee H-J, Cho EJ, Kim Y-G, Choi IS, Bae H-J (2012) Pervaporative separation of bioethanol using a polydimethylsiloxane/polyetherimide composite hollow-fiber membrane. Biores Technol 109:110–115. https://doi.org/10.1016/j.biortech.2012.01.060
Mesbah M, Shahsavari S, Soroush E, Rahaei N, Rezakazemi M (2018) Accurate prediction of miscibility of CO2 and supercritical CO2 in ionic liquids using machine learning. J CO2 Util 25:99–107. https://doi.org/10.1016/j.jcou.2018.03.004
Mo W, Soh L, Werber JR, Elimelech M, Zimmerman JB (2015) Application of membrane dewatering for algal biofuel. Algal Res 11:1–12. https://doi.org/10.1016/j.algal.2015.05.018
Mohr J, Paul D, Pinnau I, Koros W (1991) Surface fluorination of polysulfone asymmetric membranes and films. J Membr Sci 56:77–98. https://doi.org/10.1016/0376-7388(91)85016-X
Murthy G, Sridhar S, Sunder MS, Shankaraiah B, Ramakrishna M (2005) Concentration of xylose reaction liquor by nanofiltration for the production of xylitol sugar alcohol. Sep Purif Technol 44:221–228. https://doi.org/10.1016/j.seppur.2005.01.009
Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 37:52–68. https://doi.org/10.1016/j.pecs.2010.01.003
Nigiz FU, Hilmioglu ND (2018) Waste to energy with a combine membrane technology: biobutanol production and purification, exergetic, energetic and environmental dimensions. Elsevier, New York, pp 861–871. https://doi.org/10.1016/B978-0-12-813734-5.00049-4
Oh Y-K, Hwang K-R, Kim C, Kim JR, Lee J-S (2018) Recent developments and key barriers to advanced biofuels: a short review. Biores Technol 257:320–333. https://doi.org/10.1016/j.biortech.2018.02.089
Oumer AN, Hasan MM, Baheta AT, Mamat R, Abdullah AA (2018) Bio-based liquid fuels as a source of renewable energy: a review. Renew Sustain Energy Rev 88:82–98. https://doi.org/10.1016/j.rser.2018.02.022
Parawira W, Tekere M (2011) Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production. Crit Rev Biotechnol 31:20–31. https://doi.org/10.3109/07388551003757816
Petrusevski B, Bolier G, Van Breemen A, Alaerts G (1995) Tangential flow filtration: a method to concentrate freshwater algae. Water Res 29:1419–1424. https://doi.org/10.1016/0043-1354(94)00269-D
Rasi S, Veijanen A, Rintala J (2007) Trace compounds of biogas from different biogas production plants. Energy 32:1375–1380. https://doi.org/10.1016/j.energy.2006.10.018
Razavi SMR, Rezakazemi M, Albadarin AB, Shirazian S (2016) Simulation of CO2 absorption by solution of ammonium ionic liquid in hollow-fiber contactors. Chem Eng Process 108:27–34. https://doi.org/10.1016/j.cep.2016.07.001
Rdzanek P, Marszałek J, Kamiński W (2017) Biobutanol concentration by pervaporation using supported ionic liquid membranes. Sep Purif Technol 196:124–131. https://doi.org/10.1016/j.seppur.2017.10.010
Rezakazemi M (2018) CFD simulation of seawater purification using direct contact membrane desalination (DCMD) system. Desalination. https://doi.org/10.1016/j.desal.2017.12.048
Rezakazemi M, Mohammadi T (2013) Gas sorption in H2-selective mixed matrix membranes: experimental and neural network modeling. Int J Hydrogen Energy 38:14035–14041. https://doi.org/10.1016/j.ijhydene.2013.08.062
Rezakazemi M, Niazi Z, Mirfendereski M, Shirazian S, Mohammadi T, Pak A (2011a) CFD simulation of natural gas sweetening in a gas–liquid hollow-fiber membrane contactor. Chem Eng J 168:1217–1226. https://doi.org/10.1016/j.cej.2011.02.019
Rezakazemi M, Razavi S, Mohammadi T, Nazari AG (2011b) Simulation and determination of optimum conditions of pervaporative dehydration of isopropanol process using synthesized PVA–APTEOS/TEOS nanocomposite membranes by means of expert systems. J Membr Sci 379:224–232. https://doi.org/10.1016/j.memsci.2011.05.070
Rezakazemi M, Shahverdi M, Shirazian S, Mohammadi T, Pak A (2011c) CFD simulation of water removal from water/ethylene glycol mixtures by pervaporation. Chem Eng J 168:60–67. https://doi.org/10.1016/j.cej.2010.12.034
Rezakazemi M, Shahidi K, Mohammadi T (2012a) Hydrogen separation and purification using crosslinkable PDMS/zeolite A nanoparticles mixed matrix membranes. Int J Hydrogen Energy 37:14576–14589. https://doi.org/10.1016/j.ijhydene.2012.06.104
Rezakazemi M, Shahidi K, Mohammadi T (2012b) Sorption properties of hydrogen-selective PDMS/zeolite 4A mixed matrix membrane. Int J Hydrogen Energy 37:17275–17284. https://doi.org/10.1016/j.ijhydene.2012.08.109
Rezakazemi M, Shirazian S, Ashrafizadeh SN (2012c) Simulation of ammonia removal from industrial wastewater streams by means of a hollow-fiber membrane contactor. Desalination 285:383–392. https://doi.org/10.1016/j.desal.2011.10.030
Rezakazemi M, Ghafarinazari A, Shirazian S, Khoshsima A (2013a) Numerical modeling and optimization of wastewater treatment using porous polymeric membranes. Polym Eng Sci 53:1272–1278. https://doi.org/10.1002/pen.23375
Rezakazemi M, Iravaninia M, Shirazian S, Mohammadi T (2013b) Transient computational fluid dynamics modeling of pervaporation separation of aromatic/aliphatic hydrocarbon mixtures using polymer composite membrane. Polym Eng Sci 53:1494–1501. https://doi.org/10.1002/pen.23410
Rezakazemi M, Ebadi Amooghin A, Montazer-Rahmati MM, Ismail AF, Matsuura T (2014a) State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions. Prog Polym Sci 39:817–861. https://doi.org/10.1016/j.progpolymsci.2014.01.003
Rezakazemi M, Shahidi K, Mohammadi T (2014b) Synthetic PDMS composite membranes for pervaporation dehydration of ethanol. Desalination and Water Treatment 54:1–8. https://doi.org/10.1080/19443994.2014.887036
Rezakazemi M, Vatani A, Mohammadi T (2015) Synergistic interactions between POSS and fumed silica and their effect on the properties of crosslinked PDMS nanocomposite membranes. RSC Advances 5:82460–82470. https://doi.org/10.1039/c5ra13609a
Rezakazemi M, Vatani A, Mohammadi T (2016) Synthesis and gas transport properties of crosslinked poly(dimethylsiloxane) nanocomposite membranes using octatrimethylsiloxy POSS nanoparticles. J Nat Gas Sci Eng 30:10–18. https://doi.org/10.1016/j.jngse.2016.01.033
Rezakazemi M, Dashti A, Asghari M, Shirazian S (2017a) H 2 -selective mixed matrix membranes modeling using ANFIS, PSO-ANFIS, GA-ANFIS. Int J Hydrogen Energy 42:15211–15225. https://doi.org/10.1016/j.ijhydene.2017.04.044
Rezakazemi M, Heydari I, Zhang Z (2017b) Hybrid systems: combining membrane and absorption technologies leads to more efficient acid gases (CO2 and H2S) removal from natural gas. Journal of CO2 Utilization 18:362–369. https://doi.org/10.1016/j.jcou.2017.02.006
Rezakazemi M, Khajeh A, Mesbah M (2017c) Membrane filtration of wastewater from gas and oil production. Environ Chem Lett. https://doi.org/10.1007/s10311-017-0693-4
Rezakazemi M, Maghami M, Mohammadi T (2017d) High loaded synthetic hazardous wastewater treatment using lab-scale submerged ceramic membrane bioreactor. Periodica Polytech Chem Eng. https://doi.org/10.3311/PPch.11459
Rezakazemi M, Sadrzadeh M, Mohammadi T, Matsuura T (2017e) Methods for the preparation of organic–inorganic nanocomposite polymer electrolyte membranes for fuel cells. In: Inamuddin D, Mohammad A, Asiri AM (eds) Organic-inorganic composite polymer electrolyte membranes. Springer, Cham, pp 311–325. https://doi.org/10.1007/978-3-319-52739-0_11
Rezakazemi M, Dashti A, Riasat Harami H, Hajilari N, Inamuddin (2018a) Fouling-resistant membranes for water reuse. Environ Chem Lett. https://doi.org/10.1007/s10311-018-0717-8
Rezakazemi M, Sadrzadeh M, Matsuura T (2018b) Thermally stable polymers for advanced high-performance gas separation membranes. Prog Energy Combust Sci 66:1–41. https://doi.org/10.1016/j.pecs.2017.11.002
Rezakazemi M, Sadrzadeh M, Mohammadi T (2018c) Separation via pervaporation techniques through polymeric membranes. In: George SC, Wilson R, Ak S (eds) Transport properties of polymeric membranes. Elsevier, New York, pp 243–263. https://doi.org/10.1016/b978-0-12-809884-4.00013-6
Rom A, Friedl A (2016) Investigation of pervaporation performance of POMS membrane during separation of butanol from water and the effect of added acetone and ethanol. Sep Purif Technol 170:40–48. https://doi.org/10.1016/j.seppur.2016.06.030
Rostamizadeh M, Rezakazemi M, Shahidi K, Mohammadi T (2013) Gas permeation through H2-selective mixed matrix membranes: experimental and neural network modeling. Int J Hydrogen Energy 38:1128–1135. https://doi.org/10.1016/j.ijhydene.2012.10.069
Roy S, Singha NR (2017) Polymeric nanocomposite membranes for next generation pervaporation process: strategies, challenges and future prospects. Membranes 7:53. https://doi.org/10.3390/membranes7030053
Sadrzadeh M, Rezakazemi M, Mohammadi T (2018) Fundamentals and measurement techniques for gas transport in polymers. In: George SC, Wilson R, Ak S (eds) Transport properties of polymeric membranes. Elsevier, New York, pp 391–423. https://doi.org/10.1016/b978-0-12-809884-4.00019-7
Saleh J, Tremblay AY, Dubé MA (2010) Glycerol removal from biodiesel using membrane separation technology. Fuel 89:2260–2266. https://doi.org/10.1016/j.fuel.2010.04.025
Saravanan AP, Mathimani T, Deviram G, Rajendran K, Pugazhendhi A (2018) Biofuel policy in India: a review of policy barriers in sustainable marketing of biofuel. J Clean Prod 193:734–747. https://doi.org/10.1016/j.jclepro.2018.05.033
Schmidt SL, Myers MD, Kelley SS, McMillan JD, Padukone N (1997) Evaluation of PTMSP membranes in achieving enhanced ethanol removal from fermentations by pervaporation, biotechnology for fuels and chemicals. Springer, Cham, pp 469–482. https://doi.org/10.1007/978-1-4612-2312-2_41
Shahverdi M, Baheri B, Rezakazemi M, Motaee E, Mohammadi T (2013) Pervaporation study of ethylene glycol dehydration through synthesized (PVA-4A)/polypropylene mixed matrix composite membranes. Polym Eng Sci 53:1487–1493. https://doi.org/10.1002/pen.23406
Sheehan J, Dunahay T, Benemann J, Roessler P (1998) Look back at the US department of energy’s aquatic species program: biodiesel from algae; close-out report. National Renewable Energy Lab, Golden
Shi W, He B, Ding J, Li J, Yan F, Liang X (2010) Preparation and characterization of the organic–inorganic hybrid membrane for biodiesel production. Biores Technol 101:1501–1505. https://doi.org/10.1016/j.biortech.2009.07.014
Shirazian S, Marjani A, Rezakazemi M (2011) Separation of CO2 by single and mixed aqueous amine solvents in membrane contactors: fluid flow and mass transfer modeling. Eng Comput 28:189–198. https://doi.org/10.1007/s00366-011-0237-7
Shirazian S, Rezakazemi M, Marjani A, Moradi S (2012) Hydrodynamics and mass transfer simulation of wastewater treatment in membrane reactors. Desalination 286:290–295. https://doi.org/10.1016/j.desal.2011.11.039
Sodeifian G, Raji M, Asghari M, Rezakazemi M, Dashti A (2018) Polyurethane-SAPO-34 mixed matrix membrane for CO2/CH4 and CO2/N2 separation. Chin J Chem Eng. https://doi.org/10.1016/j.cjche.2018.03.012
Soroush E, Shahsavari S, Mesbah M, Rezakazemi M, Ze Zhang (2018) A robust predictive tool for estimating CO2 solubility in potassium based amino acid salt solutions. Chin J Chem Eng 26:740–746. https://doi.org/10.1016/j.cjche.2017.10.002
Speight JG (2011) The biofuels handbook. Royal Society of Chemistry, London
Udriot H, Ampuero S, Marison I, Von Stockar U (1989) Extractive fermentation of ethanol using membrane distillation. Biotech Lett 11:509–514. https://doi.org/10.1007/BF01026651
Vane LM (2008) Separation technologies for the recovery and dehydration of alcohols from fermentation broths. Biofuels Bioprod Biorefin 2:553–588. https://doi.org/10.1002/bbb.108
Villa A, Tessonnier J-P, Majoulet O, Su DS, Schlögl R (2009) Amino-functionalized carbon nanotubes as solid basic catalysts for the transesterification of triglycerides. Chem Commun 0:4405–4407. https://doi.org/10.1039/B906123A
Visser T, Masetto N, Wessling M (2007) Materials dependence of mixed gas plasticization behavior in asymmetric membranes. J Membr Sci 306:16–28. https://doi.org/10.1016/j.memsci.2007.07.048
Wei P, Cheng L-H, Zhang L, Xu X-H, H-l Chen, C-j Gao (2014) A review of membrane technology for bioethanol production. Renew Sustain Energy Rev 30:388–400. https://doi.org/10.1016/j.rser.2013.10.017
Westermann T, Melin T (2009) Flow-through catalytic membrane reactors—principles and applications. Chem Eng Process 48:17–28. https://doi.org/10.1016/j.cep.2008.07.001
Ylitervo P, Akinbomi J, Taherzadeh MJ (2013) Membrane bioreactors’ potential for ethanol and biogas production: a review. Environ Technol 34:1711–1723. https://doi.org/10.1080/09593330.2013.813559
Zhang Z, Chen F, Rezakazemi M, Zhang W, Lu C, Chang H, Quan X (2018) Modeling of a CO2-piperazine-membrane absorption system. Chem Eng Res Des 131:375–384. https://doi.org/10.1016/j.cherd.2017.11.024
Zhu M, He B, Shi W, Feng Y, Ding J, Li J, Zeng F (2010) Preparation and characterization of PSSA/PVA catalytic membrane for biodiesel production. Fuel 89:2299–2304. https://doi.org/10.1016/j.fuel.2010.02.001