Dkk2 plays an essential role in the corneal fate of the ocular surface epithelium

Development (Cambridge) - Tập 133 Số 11 - Trang 2149-2154 - 2006
Mahua Mukhopadhyay1, Marat Gorivodsky1, Svetlana Shtrom1, Alexander Grinberg1, Christoph Niehrs2,3, María I. Morasso4, Heiner Westphal1
1Laboratory of Mammalian Genes and Development, National Institute of Child Health and Human Development, Bethesda, MD 20892 USA
2Cell Biology and Tumor Biology
3German Cancer Research Center, Heidelberg, Germany
4Developmental Skin Biology Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.

Tóm tắt

The Dkk family of secreted cysteine-rich proteins regulates Wnt/β-catenin signaling by interacting with the Wnt co-receptor Lrp5/6. Here, we show that Dkk2-mediated repression of the Wnt/β-catenin pathway is essential to promote differentiation of the corneal epithelial progenitor cells into a non-keratinizing stratified epithelium. Complete transformation of the corneal epithelium into a stratified epithelium that expresses epidermal-specific differentiation markers and develops appendages such as hair follicles is achieved in the absence of the Dkk2 gene function. We show that Dkk2 is a key regulator of the corneal versus epidermal fate of the ocular surface epithelium.

Từ khóa


Tài liệu tham khảo

Andl, T., Reddy, S. T., Gaddapara, T. and Millar, S. E.(2002). Wnt signals are required for the initiation of hair follicle development. Dev. Cell2, 643-653.

Ang, S. J., Stump, R. J. W., Lovicu, F. J. and McAvoy, J. W.(2004). Spatial and temporal expression of Wnt and Dickkopf genes during murine lens development. Gene Exp. Patterns4, 289-295.

Candi, E., Schmidt, R. and Melino, G. (2005). The cornified envelope: a model of cell death in the skin. Nat. Rev. Mol. Cell Biol. 6,328-340.

Chaloin-Dufau, C., Pavitt, I., Delorme, P. and Dhouailly, D.(1993). Identification of keratins 3 and 12 in corneal epithelium of vertebrates. Epithelial Cell Biol.2, 120-125.

Cotsarelis, G., Cheng, S. Z., Dong, G., Sun, T. T. and Lavker,R. M. (1989). Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell57,201-209.

DasGupta, R. and Fuchs, E. (1999). Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development126,4557-4568.

Davis, J., Duncan, M. K., Robison, W. G., Jr and Piatigorsky,J. (2003). Requirement for Pax6 in corneal morphogenesis: a role in adhesion. J. Cell Sci.116,2157-2167.

Ferraris, C., Chevalier, G., Favier, B., Jahoda, C. A. B. and Dhouailly, D. (2000). Adult corneal epithelium basal cells possess the capacity to activate epidermal, pilosebaceous and sweat gland genetic programs in response to embryonic dermal stimuli. Development127,5487-5495.

Glinka, A., Wu, W., Delius, H., Monaghan, A. P., Blumenstock, C. and Niehrs, C. (1998). Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature391,357-362.

Hashimoto, H., Itoh, M., Yamanaka, Y., Yamashita, S., Shimizu,T., Solnica-Krezel, L., Hibi, M. and Hirano, T. (2000). Zebrafish DKK1 functions in forebrain specification and axial mesendoderm formation. Dev. Biol.217,138-152.

He, X., Semenov, M., Tamai, K. and Zheng, X.(2004). LDL receptor-related proteins 5 and 6 in Wnt/b-catenin signaling: arrows point the way. Development131,1663-1677.

Hogan, B., Beddington, R., Costantini, F. and Lacy, E.(1994). Staining for β-galactosidase (lacZ) activity. In Manipulating the Mouse Embryo: A Laboratory Manual.2nd edn, pp. 373-375. New York: Cold Spring Harbor Laboratory Press.

Hsieh, J. C., Kodjabachian, L., Rebbert, M. L., Rattner, A.,Smallwood, P. M., Samos, C. H., Nusse, R., Dawid, I. B. and Nathans, J.(1999). A new secreted protein that binds to Wnt proteins and inhibits their activities. Nature398,431-436.

Huelsken, J., Vogel, R., Erdmann, B., Cotsarelis, G. and Birchmeier, W. (2001). β-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell105,533-545.

Jamora, C., DasGupta, R., Kocieniewski, P. and Fuchs, E.(2003). Links between signal transduction, transcription and adhesion in epithelial bud development. Nature422,317-322.

Li, X., Liu, P., Liu, W., Maye, P., Zhang, J., Zhang, Y.,Hurley, M., Guo, C., Boskey, A., Sun, L. et al. (2005). Dkk2 has a role in terminal osteoblast differentiation and mineralized matrix formation. Nat. Genet.37,945-952.

Logan, C. Y. and Nusse, R. (2004). The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol.20,781-810.

Mao, B. and Niehrs, C. (2003). Kremen2 modulates Dickkopf2 activity during Wnt/LRP6 signaling. Gene302,179-183.

Megason, S. G. and McMahon, A. P. (2002). A mitogen gradient of dorsal midline Wnts organizes growth in the CNS. Development129,2087-2098.

Millar, S. E. (2003). Wnts: multiple genes,multiple functions. J. Invest. Dermatol.120, 20-26.

Monaghan, A. P., Kioschis, P., Wu, W., Zuniga, A., Bock, D.,Poustka, A., Delius, H. and Niehrs, C. (1999). Dickkopf genes are co-ordinately expressed in mesodermal lineages. Mech. Dev. 87,45-56.

Morin, P. J. (1999). Beta-catenin signaling and cancer. BioEssays21,1021-1030.

Mukhopadhyay, M., Shtrom, S., Rodriguez-Esteban, C., Chen, L.,Tsukui, T., Gomer, L., Dorward, D. W., Glinka, A., Grinberg, A., Huang, S. P. et al. (2001). Dickkopf1 is required for embryonic head induction and limb morphogenesis in the mouse. Dev. Cell1,423-434.

Nicolas, M., Wolfer, A., Raj, K., Kummer, J. A., Mill, P., van Noort, M., Hui, C. C., Clevers, H., Dotto, G. P. and Radtke, F.(2003). Notch1 functions as a tumor suppressor in mouse skin. Nat. Genet.33,416-421.

Pearton, D. J., Yang, Y. and Dhouailly, D.(2005). Transdifferentiation of corneal epithelium into epidermis occurs by means of a multistep process triggered by dermal developmental signals. Proc. Natl. Acad. Sci. USA102,3714-3719.

Pellegrini, G., Golisano, O., Paterna, P., Lambiase, A., Bonini,S., Rama, P. and De Luca, M. (1999). Location and clonal analysis of stem cells and their differentiated progeny in the human ocular surface. J. Cell Biol.145,769-782.

Piccolo, S., Agius, E., Leyns, L., Bhattacharyya, S., Grunz, H.,Bouwmeester, T. and De Robertis, E. M. (1999). The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature397,707-710.

Puangsricharern, V. and Tseng, S. C. (1995). Cytologic evidence of corneal diseases with limbal stem cell deficiency. Ophthalmology102,1476-1485.

Ramaesh, T., Collinson, J. M., Ramaesh, K., Kaufman, M. H.,West, J. D. and Dhillon, B. (2003). Corneal abnormalities in Pax6+/– small eye mice mimic human aniridia-related keratopathy. Invest. Ophthalmol. Vis. Sci.44,1871-1878.

Rattner, A., Hsieh, J.-C., Smallwood, P. M., Gilbert, D.,Copeland, N. G., Jenkins, N. A. and Nathans, J. (1997). A family of secreted proteins contains homology to the Cysteine-rich ligand binding domain of frizzled receptors. Proc. Natl. Acad. Sci. USA94,2859-2863.

Silva-Vargas, V., Ceiso, C. L., Giangreco, A., Ofstad, T.,Prowse, D. M., Braun, K. M. and Watt, F. M. (2005).β-Catenin and Hedgehog signal strength can specify number and location of hair follicles in adult epidermis without recruitment of bulge stem cells. Dev. Cell9,121-131.

St-Jacques, B., Dassule, H. R., Karavanova, I., Botchkarev, V. A., Li, J., Danielian, P. S., McMahon. J. A., Lewis, P. M., Paus, R. and McMahon, A. P. (1998). Sonic hedgehog signaling is essential for hair development. Curr. Biol.8,1058-1068.

Watt, F. M. (2004). Unexpected Hedgehog-Wnt interactions in epithelial differentiation. Trends Mol. Med.10,577-580.

Wolosin, J. M., Budak, M. T. and Akinci, M. M. A.(2004). Ocular surface epithelial and stem cell development. Int. J. Dev. Biol.48,981-991.

Yamaguchi, T. P., Bradley, A., McMahon, A. P. and Jones, S. A. (1999). Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development26,1211-1223.