MicroRNAs as regulators and mediators of c-MYC function
Tóm tắt
Từ khóa
Tài liệu tham khảo
Haluska, 1987, Oncogene activation by chromosome translocation in human malignancy, Annu. Rev. Genet., 21, 321, 10.1146/annurev.ge.21.120187.001541
Nesbit, 1999, MYC oncogenes and human neoplastic disease, Oncogene, 18, 3004, 10.1038/sj.onc.1202746
Marcu, 1992, Myc function and regulation, Annu. Rev. Biochem., 61, 809, 10.1146/annurev.bi.61.070192.004113
Chappell, 2000, A mutation in the c-myc-IRES leads to enhanced internal ribosome entry in multiple myeloma: a novel mechanism of oncogene de-regulation, Oncogene, 19, 4437, 10.1038/sj.onc.1203791
Albert, 1994, Ongoing mutations in the N-terminal domain of c-Myc affect transactivation in Burkitt's lymphoma cell lines, Oncogene, 9, 759
Salghetti, 1999, Destruction of Myc by ubiquitin-mediated proteolysis: cancer-associated and transforming mutations stabilize Myc, EMBO J., 18, 717, 10.1093/emboj/18.3.717
He, 1998, Identification of c-MYC as a target of the APC pathway, Science, 281, 1509, 10.1126/science.281.5382.1509
van de Wetering, 2002, The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells, Cell, 111, 241, 10.1016/S0092-8674(02)01014-0
Sansom, 2004, Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration, Genes Dev., 18, 1385, 10.1101/gad.287404
Dang, 2006, The c-Myc target gene network, Semin. Cancer Biol., 16, 253, 10.1016/j.semcancer.2006.07.014
Menssen, 2002, Characterization of the c-MYC-regulated transcriptome by SAGE: identification and analysis of c-MYC target genes, Proc. Natl. Acad. Sci. U. S. A., 99, 6274, 10.1073/pnas.082005599
Jackstadt, 2013, Genome-wide analysis of c-MYC-regulated mRNAs and miRNAs, and c-MYC DNA binding by next-generation sequencing, Methods Mol. Biol., 1012, 145, 10.1007/978-1-62703-429-6_11
Hermeking, 1994, Mediation of c-Myc-induced apoptosis by p53, Science, 265, 2091, 10.1126/science.8091232
Zindy, 1998, Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization, Genes Dev., 12, 2424, 10.1101/gad.12.15.2424
Vafa, 2002, c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability, Mol. Cell, 9, 1031, 10.1016/S1097-2765(02)00520-8
Cowling, 2006, Mechanism of transcriptional activation by the Myc oncoproteins, Semin. Cancer Biol., 16, 242, 10.1016/j.semcancer.2006.08.001
Rahl, 2010, c-Myc regulates transcriptional pause release, Cell, 141, 432, 10.1016/j.cell.2010.03.030
Adhikary, 2005, Transcriptional regulation and transformation by Myc proteins, Nat. Rev. Mol. Cell Biol., 6, 635, 10.1038/nrm1703
Ayer, 1995, Mad-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3, Cell, 80, 767, 10.1016/0092-8674(95)90355-0
Peukert, 1997, An alternative pathway for gene regulation by Myc, EMBO J., 16, 5672, 10.1093/emboj/16.18.5672
Herold, 2002, Negative regulation of the mammalian UV response by Myc through association with Miz-1, Mol. Cell, 10, 509, 10.1016/S1097-2765(02)00633-0
Mao, 2003, Analysis of Myc bound loci identified by CpG island arrays shows that Max is essential for Myc-dependent repression, Curr. Biol., 13, 882, 10.1016/S0960-9822(03)00297-5
Staller, 2001, Repression of p15INK4b expression by Myc through association with Miz-1, Nat. Cell Biol., 3, 392, 10.1038/35070076
Smale, 1989, The “initiator” as a transcription control element, Cell, 57, 103, 10.1016/0092-8674(89)90176-1
Bartel, 2009, MicroRNAs: target recognition and regulatory functions, Cell, 136, 215, 10.1016/j.cell.2009.01.002
Hammond, 2001, Argonaute2, a link between genetic and biochemical analyses of RNAi, Science, 293, 1146, 10.1126/science.1064023
Hammond, 2000, An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells, Nature, 404, 293, 10.1038/35005107
Elbashir, 2001, Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate, EMBO J., 20, 6877, 10.1093/emboj/20.23.6877
Fabian, 2010, Regulation of mRNA translation and stability by microRNAs, Annu. Rev. Biochem., 79, 351, 10.1146/annurev-biochem-060308-103103
Friedman, 2009, Most mammalian mRNAs are conserved targets of microRNAs, Genome Res., 19, 92, 10.1101/gr.082701.108
Chang, 2009, Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation, Proc. Natl. Acad. Sci. U. S. A., 106, 3384, 10.1073/pnas.0808300106
Newman, 2008, Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing, RNA, 14, 1539, 10.1261/rna.1155108
Rybak, 2008, A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment, Nat. Cell Biol., 10, 987, 10.1038/ncb1759
Hagan, 2009, Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells, Nat. Struct. Mol. Biol., 16, 1021, 10.1038/nsmb.1676
Heo, 2009, TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation, Cell, 138, 696, 10.1016/j.cell.2009.08.002
Wang, 2013, c-Myc modulates microRNA processing via the transcriptional regulation of Drosha, Sci. Rep., 3, 1942, 10.1038/srep01942
Kumar, 2009, Dicer1 functions as a haploinsufficient tumor suppressor, Genes Dev., 23, 2700, 10.1101/gad.1848209
Karube, 2005, Reduced expression of Dicer associated with poor prognosis in lung cancer patients, Cancer Sci., 96, 111, 10.1111/j.1349-7006.2005.00015.x
Arrate, 2010, MicroRNA biogenesis is required for Myc-induced B-cell lymphoma development and survival, Cancer Res., 70, 6083, 10.1158/0008-5472.CAN-09-4736
Brennecke, 2003, Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila, Cell, 113, 25, 10.1016/S0092-8674(03)00231-9
Brennecke, 2003, Towards a complete description of the microRNA complement of animal genomes, Genome Biol., 4, 228, 10.1186/gb-2003-4-9-228
O'Donnell, 2005, c-Myc-regulated microRNAs modulate E2F1 expression, Nature, 435, 839, 10.1038/nature03677
He, 2005, A microRNA polycistron as a potential human oncogene, Nature, 435, 828, 10.1038/nature03552
Tanzer, 2004, Molecular evolution of a microRNA cluster, J. Mol. Biol., 339, 327, 10.1016/j.jmb.2004.03.065
Ventura, 2008, Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters, Cell, 132, 875, 10.1016/j.cell.2008.02.019
Houbaviy, 2003, Embryonic stem cell-specific microRNAs, Dev. Cell, 5, 351, 10.1016/S1534-5807(03)00227-2
Volinia, 2006, A microRNA expression signature of human solid tumors defines cancer gene targets, Proc. Natl. Acad. Sci. U. S. A., 103, 2257, 10.1073/pnas.0510565103
Ota, 2004, Identification and characterization of a novel gene, C13orf25, as a target for 13q31–q32 amplification in malignant lymphoma, Cancer Res., 64, 3087, 10.1158/0008-5472.CAN-03-3773
Xiao, 2008, Lymphoproliferative disease and autoimmunity in mice with increased miR-17–92 expression in lymphocytes, Nat. Immunol., 9, 405, 10.1038/ni1575
Sandhu, 2013, B-cell malignancies in microRNA Emu-miR-17~92 transgenic mice, Proc. Natl. Acad. Sci. U. S. A., 110, 18208, 10.1073/pnas.1315365110
Mu, 2009, Genetic dissection of the miR-17~92 cluster of microRNAs in Myc-induced B-cell lymphomas, Genes Dev., 23, 2806, 10.1101/gad.1872909
Olive, 2009, miR-19 is a key oncogenic component of mir-17–92, Genes Dev., 23, 2839, 10.1101/gad.1861409
Dews, 2006, Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster, Nat. Genet., 38, 1060, 10.1038/ng1855
Uziel, 2009, The miR-17~92 cluster collaborates with the Sonic Hedgehog pathway in medulloblastoma, Proc. Natl. Acad. Sci. U. S. A., 106, 2812, 10.1073/pnas.0809579106
Conkrite, 2011, miR-17~92 cooperates with RB pathway mutations to promote retinoblastoma, Genes Dev., 25, 1734, 10.1101/gad.17027411
Kumar, 2013, The c-Myc-regulated microRNA-17~92 (miR-17~92) and miR-106a~363 clusters target hCYP19A1 and hGCM1 to inhibit human trophoblast differentiation, Mol. Cell. Biol., 33, 1782, 10.1128/MCB.01228-12
Woods, 2007, Direct regulation of an oncogenic micro-RNA cluster by E2F transcription factors, J. Biol. Chem., 282, 2130, 10.1074/jbc.C600252200
Sylvestre, 2007, An E2F/miR-20a autoregulatory feedback loop, J. Biol. Chem., 282, 2135, 10.1074/jbc.M608939200
Petrocca, 2008, Emerging role of miR-106b-25/miR-17–92 clusters in the control of transforming growth factor beta signaling, Cancer Res., 68, 8191, 10.1158/0008-5472.CAN-08-1768
Ambs, 2008, Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer, Cancer Res., 68, 6162, 10.1158/0008-5472.CAN-08-0144
Petrocca, 2008, E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer, Cancer Cell, 13, 272, 10.1016/j.ccr.2008.02.013
Song, 2013, MicroRNA-antagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling, Cell, 154, 311, 10.1016/j.cell.2013.06.026
Song, 2013, The oncogenic microRNA miR-22 targets the TET2 tumor suppressor to promote hematopoietic stem cell self-renewal and transformation, Cell Stem Cell, 13, 87, 10.1016/j.stem.2013.06.003
Xu, 2012, Attenuation of microRNA-22 derepressed PTEN to effectively protect rat cardiomyocytes from hypertrophy, J. Cell. Physiol., 227, 1391, 10.1002/jcp.22852
Bar, 2010, miR-22 forms a regulatory loop in PTEN/AKT pathway and modulates signaling kinetics, PLoS One, 5, e10859, 10.1371/journal.pone.0010859
Ling, 2012, Tumor suppressor miR-22 suppresses lung cancer cell progression through post-transcriptional regulation of ErbB3, J. Cancer Res. Clin. Oncol., 138, 1355, 10.1007/s00432-012-1194-2
Feng, 2011, Myc/miR-378/TOB2/cyclin D1 functional module regulates oncogenic transformation, Oncogene, 30, 2242, 10.1038/onc.2010.602
Mestdagh, 2010, MYCN/c-MYC-induced microRNAs repress coding gene networks associated with poor outcome in MYCN/c-MYC-activated tumors, Oncogene, 29, 1394, 10.1038/onc.2009.429
Loven, 2010, MYCN-regulated microRNAs repress estrogen receptor-alpha (ESR1) expression and neuronal differentiation in human neuroblastoma, Proc. Natl. Acad. Sci. U. S. A., 107, 1553, 10.1073/pnas.0913517107
Schulte, 2008, MYCN regulates oncogenic microRNAs in neuroblastoma, Int. J. Cancer, 122, 699, 10.1002/ijc.23153
Chang, 2008, Widespread microRNA repression by Myc contributes to tumorigenesis, Nat. Genet., 40, 43, 10.1038/ng.2007.30
Ma, 2010, miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis, Nat. Cell Biol., 12, 247, 10.1038/ncb2024
Chivukula, 2008, Circular reasoning: microRNAs and cell-cycle control, Trends Biochem. Sci., 33, 474, 10.1016/j.tibs.2008.06.008
Hermeking, 2010, The miR-34 family in cancer and apoptosis, Cell Death Differ., 17, 193, 10.1038/cdd.2009.56
Lee, 2007, The tumor suppressor microRNA let-7 represses the HMGA2 oncogene, Genes Dev., 21, 1025, 10.1101/gad.1540407
Gao, 2009, c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism, Nature, 458, 762, 10.1038/nature07823
Wise, 2008, Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction, Proc. Natl. Acad. Sci. U. S. A., 105, 18782, 10.1073/pnas.0810199105
Vander Heiden, 2009, Understanding the Warburg effect: the metabolic requirements of cell proliferation, Science, 324, 1029, 10.1126/science.1160809
DeBerardinis, 2008, The biology of cancer: metabolic reprogramming fuels cell growth and proliferation, Cell Metab., 7, 11, 10.1016/j.cmet.2007.10.002
Hermeking, 2012, MicroRNAs in the p53 network: micromanagement of tumour suppression, Nat. Rev. Cancer, 12, 613, 10.1038/nrc3318
Aqeilan, 2010, miR-15a and miR-16-1 in cancer: discovery, function and future perspectives, Cell Death Differ., 17, 215, 10.1038/cdd.2009.69
Calin, 2002, Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia, Proc. Natl. Acad. Sci. U. S. A., 99, 15524, 10.1073/pnas.242606799
Calin, 2002, Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia, Proc. Natl. Acad. Sci. U. S. A., 99, 15524, 10.1073/pnas.242606799
Zhang, 2012, Myc represses miR-15a/miR-16-1 expression through recruitment of HDAC3 in mantle cell and other non-Hodgkin B-cell lymphomas, Oncogene, 31, 3002, 10.1038/onc.2011.470
Calin, 2002, Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia, Proc. Natl. Acad. Sci. U. S. A., 99, 15524, 10.1073/pnas.242606799
Klein, 2010, The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia, Cancer Cell, 17, 28, 10.1016/j.ccr.2009.11.019
Bonci, 2008, The miR-15a–miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities, Nat. Med., 14, 1271, 10.1038/nm.1880
Cimmino, 2005, miR-15 and miR-16 induce apoptosis by targeting BCL2, Proc. Natl. Acad. Sci. U. S. A., 102, 13944, 10.1073/pnas.0506654102
Liu, 2008, miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes, Nucleic Acids Res., 36, 5391, 10.1093/nar/gkn522
Rissland, 2011, MicroRNA destabilization enables dynamic regulation of the miR-16 family in response to cell-cycle changes, Mol. Cell, 43, 993, 10.1016/j.molcel.2011.08.021
Shi, 2014, p53-induced miR-15a/16-1 and AP4 form a double-negative feedback loop to regulate epithelial–mesenchymal transition and metastasis in colorectal cancer, Cancer Res., 74, 532, 10.1158/0008-5472.CAN-13-2203
Fabbri, 2011, Association of a microRNA/TP53 feedback circuitry with pathogenesis and outcome of B-cell chronic lymphocytic leukemia, JAMA, 305, 59, 10.1001/jama.2010.1919
Zhang, 2012, Coordinated silencing of MYC-mediated miR-29 by HDAC3 and EZH2 as a therapeutic target of histone modification in aggressive B-cell lymphomas, Cancer Cell, 22, 506, 10.1016/j.ccr.2012.09.003
Sander, 2008, MYC stimulates EZH2 expression by repression of its negative regulator miR-26a, Blood, 112, 4202, 10.1182/blood-2008-03-147645
Mott, 2010, Transcriptional suppression of mir-29b-1/mir-29a promoter by c-Myc, hedgehog, and NF-kappaB, J. Cell. Biochem., 110, 1155, 10.1002/jcb.22630
Kota, 2009, Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model, Cell, 137, 1005, 10.1016/j.cell.2009.04.021
Tarasov, 2007, Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest, Cell Cycle, 6, 1586, 10.4161/cc.6.13.4436
Chang, 2007, Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis, Mol. Cell., 26, 745, 10.1016/j.molcel.2007.05.010
He, 2007, A microRNA component of the p53 tumour suppressor network, Nature, 447, 1130, 10.1038/nature05939
Raver-Shapira, 2007, Transcriptional activation of miR-34a contributes to p53-mediated apoptosis, Mol. Cell, 26, 731, 10.1016/j.molcel.2007.05.017
Bommer, 2007, p53-mediated activation of miRNA34 candidate tumor-suppressor genes, Curr. Biol., 17, 1298, 10.1016/j.cub.2007.06.068
Christoffersen, 2010, p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC, Cell Death Differ., 17, 236, 10.1038/cdd.2009.109
Yang, 2009, miR-449a and miR-449b are direct transcriptional targets of E2F1 and negatively regulate pRb-E2F1 activity through a feedback loop by targeting CDK6 and CDC25A, Genes Dev., 23, 2388, 10.1101/gad.1819009
Siemens, 2013, Repression of c-Kit by p53 is mediated by miR-34 and is associated with reduced chemoresistance, migration and stemness, Oncotarget, 4, 1399, 10.18632/oncotarget.1202
Siemens, 2011, miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial–mesenchymal transitions, Cell Cycle, 10, 4256, 10.4161/cc.10.24.18552
Rokavec, 2014, IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis, J. Clin. Invest., 124, 1853, 10.1172/JCI73531
Cheng, 2014, miR-34 cooperates with p53 in suppression of prostate cancer by joint regulation of stem cell compartment, Cell. Reports., 6, 1000, 10.1016/j.celrep.2014.02.023
Okada, 2014, A positive feedback between p53 and miR-34 miRNAs mediates tumor suppression, Genes Dev., 28, 438, 10.1101/gad.233585.113
Lodygin, 2008, Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer, Cell Cycle, 7, 2591, 10.4161/cc.7.16.6533
Vogt, 2011, Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarcomas, Virchows Arch., 458, 313, 10.1007/s00428-010-1030-5
Siemens, 2013, Detection of miR-34a promoter methylation in combination with elevated expression of c-Met and beta-catenin predicts distant metastasis of colon cancer, Clin. Cancer Res., 19, 710, 10.1158/1078-0432.CCR-12-1703
Sotillo, 2011, Myc overexpression brings out unexpected antiapoptotic effects of miR-34a, Oncogene, 30, 2587, 10.1038/onc.2010.634
Wei, 2008, The MYCN oncogene is a direct target of miR-34a, Oncogene, 27, 5204, 10.1038/onc.2008.154
Welch, 2007, MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells, Oncogene, 26, 5017, 10.1038/sj.onc.1210293
Cole, 2008, A functional screen identifies miR-34a as a candidate neuroblastoma tumor suppressor gene, Mol. Cancer Res., 6, 735, 10.1158/1541-7786.MCR-07-2102
Kasinski, 2012, miRNA-34 prevents cancer initiation and progression in a therapeutically resistant K-ras and p53-induced mouse model of lung adenocarcinoma, Cancer Res., 72, 5576, 10.1158/0008-5472.CAN-12-2001
Liu, 2011, The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44, Nat. Med., 17, 211, 10.1038/nm.2284
Han, 2013, A c-Myc-microRNA functional feedback loop affects hepatocarcinogenesis, Hepatology, 57, 2378, 10.1002/hep.26302
Yang, 2010, Hepatocellular carcinoma: a global view, Nat. Rev. Gastroenterol. Hepatol., 7, 448, 10.1038/nrgastro.2010.100
Liao, 2011, Autoregulatory suppression of c-Myc by miR-185-3p, J. Biol. Chem., 286, 33901, 10.1074/jbc.M111.262030
Sampson, 2007, MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells, Cancer Res., 67, 9762, 10.1158/0008-5472.CAN-07-2462
Abe, 2013, miR-196b targets c-myc and Bcl-2 expression, inhibits proliferation and induces apoptosis in endometriotic stromal cells, Hum. Reprod., 28, 750, 10.1093/humrep/des446
Zhen, 2013, Tumor suppressor PDCD4 modulates miR-184-mediated direct suppression of C-MYC and BCL2 blocking cell growth and survival in nasopharyngeal carcinoma, Cell Death Dis., 4, e872, 10.1038/cddis.2013.376
Miao, 2013, MiR-449c targets c-Myc and inhibits NSCLC cell progression, FEBS Lett., 587, 1359, 10.1016/j.febslet.2013.03.006
Ragimov, 1993, Wild-type but not mutant p53 can repress transcription initiation in vitro by interfering with the binding of basal transcription factors to the TATA motif, Oncogene, 8, 1183
Sachdeva, 2009, p53 represses c-Myc throughinduction of the tumor suppressor miR-145, Proc. Natl. Acad. Sci. U.S.A., 106, 3207, 10.1073/pnas.0808042106
Yamamura, 2012, MicroRNA-34a suppresses malignant transformation by targeting c-Myc transcriptional complexes in human renal cell carcinoma, Carcinogenesis, 33, 294, 10.1093/carcin/bgr286
Yamamura, 2012, MicroRNA-34a modulates c-Myc transcriptional complexes to suppress malignancy in human prostate cancer cells, PLoS One, 7, e29722, 10.1371/journal.pone.0029722
Kress, 2011, The MK5/PRAK kinase and Myc form a negative feedback loop that is disrupted during colorectal tumorigenesis, Mol. Cell, 41, 445, 10.1016/j.molcel.2011.01.023
Lal, 2009, miR-24 inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to “seedless” 3′UTR microRNA recognition elements, Mol. Cell, 35, 610, 10.1016/j.molcel.2009.08.020
Challagundla, 2011, Ribosomal protein L11 recruits miR-24/miRISC to repress c-Myc expression in response to ribosomal stress, Mol. Cell. Biol., 31, 4007, 10.1128/MCB.05810-11
Ebert, 2012, Roles for microRNAs in conferring robustness to biological processes, Cell, 149, 515, 10.1016/j.cell.2012.04.005
El Baroudi, 2011, A curated database of miRNA mediated feed-forward loops involving MYC as master regulator, PLoS One, 6, e14742, 10.1371/journal.pone.0014742
Coller, 2007, “Myc'ed messages”: myc induces transcription of E2F1 while inhibiting its translation via a microRNA polycistron, PLoS Genet., 3, e146, 10.1371/journal.pgen.0030146
Johnson, 2000, The paradox of E2F1: oncogene and tumor suppressor gene, Mol. Carcinog., 27, 151, 10.1002/(SICI)1098-2744(200003)27:3<151::AID-MC1>3.0.CO;2-C
Soucek, 2010, The ups and downs of Myc biology, Curr. Opin. Genet. Dev., 20, 91, 10.1016/j.gde.2009.11.001
Aguda, 2008, MicroRNA regulation of a cancer network: consequences of the feedback loops involving miR-17–92, E2F, and Myc, Proc. Natl. Acad. Sci. U. S. A., 105, 19678, 10.1073/pnas.0811166106
Kim, 2010, Myc-induced microRNAs integrate Myc-mediated cell proliferation and cell fate, Cancer Res., 70, 4820, 10.1158/0008-5472.CAN-10-0659
Poliseno, 2010, Identification of the miR-106b~25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation, Sci. Signal., 3, ra29, 10.1126/scisignal.2000594
Jung, 2008, AP4 encodes a c-MYC-inducible repressor of p21, Proc. Natl. Acad. Sci. U. S. A., 105, 15046, 10.1073/pnas.0801773105
Fontana, 2008, Antagomir-17-5p abolishes the growth of therapy-resistant neuroblastoma through p21 and BIM, PLoS One, 3, e2236, 10.1371/journal.pone.0002236
Sun, 2013, miR-15a and miR-16 affect the angiogenesis of multiple myeloma by targeting VEGF, Carcinogenesis, 34, 426, 10.1093/carcin/bgs333
Yin, 2012, Vascular endothelial cell-specific microRNA-15a inhibits angiogenesis in hindlimb ischemia, J. Biol. Chem., 287, 27055, 10.1074/jbc.M112.364414
Ling, 2013, MicroRNA-dependent cross-talk between VEGF and HIF1alpha in the diabetic retina, Cell. Signal., 25, 2840, 10.1016/j.cellsig.2013.08.039
Wang, 2009, AngiomiRs—key regulators of angiogenesis, Curr. Opin. Genet. Dev., 19, 205, 10.1016/j.gde.2009.04.002
Wolfer, 2010, MYC regulation of a “poor-prognosis” metastatic cancer cell state, Proc. Natl. Acad. Sci. U. S. A., 107, 3698, 10.1073/pnas.0914203107
Kozma, 1994, Investigation of c-myc oncogene amplification in colorectal cancer, Cancer Lett., 81, 165, 10.1016/0304-3835(94)90198-8
Thiery, 2009, Epithelial–mesenchymal transitions in development and disease, Cell, 139, 871, 10.1016/j.cell.2009.11.007
Tam, 2013, The epigenetics of epithelial–mesenchymal plasticity in cancer, Nat. Med., 19, 1438, 10.1038/nm.3336
Brabletz, 2012, To differentiate or not—routes towards metastasis, Nat. Rev. Cancer, 12, 425, 10.1038/nrc3265
Yang, 2008, Epithelial–mesenchymal transition: at the crossroads of development and tumor metastasis, Dev. Cell, 14, 818, 10.1016/j.devcel.2008.05.009
Cho, 2010, Overexpression of c-Myc induces epithelial mesenchymal transition in mammary epithelial cells, Cancer Lett., 293, 230, 10.1016/j.canlet.2010.01.013
Cowling, 2007, c-Myc transforms human mammary epithelial cells through repression of the Wnt inhibitors DKK1 and SFRP1, Mol. Cell. Biol., 27, 5135, 10.1128/MCB.02282-06
Smith, 2009, A positive role for Myc in TGFbeta-induced Snail transcription and epithelial-to-mesenchymal transition, Oncogene, 28, 422, 10.1038/onc.2008.395
Nieto, 2013, Epithelial plasticity: a common theme in embryonic and cancer cells, Science, 342, 1234850, 10.1126/science.1234850
Chen, 2012, LIFR is a breast cancer metastasis suppressor upstream of the Hippo–YAP pathway and a prognostic marker, Nat. Med., 18, 1511, 10.1038/nm.2940
Zhuang, 2012, Tumour-secreted miR-9 promotes endothelial cell migration and angiogenesis by activating the JAK–STAT pathway, EMBO J., 31, 3513, 10.1038/emboj.2012.183
Liu, 2012, MYC suppresses cancer metastasis by direct transcriptional silencing of alphav and beta3 integrin subunits, Nat. Cell Biol., 14, 567, 10.1038/ncb2491
Yu, 2010, MicroRNA 17/20 inhibits cellular invasion and tumor metastasis in breast cancer by heterotypic signaling, Proc. Natl. Acad. Sci. U. S. A., 107, 8231, 10.1073/pnas.1002080107
Koch, 2007, Large-scale identification of c-MYC-associated proteins using a combined TAP/MudPIT approach, Cell Cycle, 6, 205, 10.4161/cc.6.2.3742
Hahn, 2013, SNAIL and miR-34a feed-forward regulation of ZNF281/ZBP99 promotes epithelial–mesenchymal transition, EMBO J., 32, 3079, 10.1038/emboj.2013.236
Jackstadt, 2013, AP4 is a mediator of epithelial–mesenchymal transition and metastasis in colorectal cancer, J. Exp. Med., 210, 1331, 10.1084/jem.20120812
Jackstadt, 2013, AP4 directly downregulates p16 and p21 to suppress senescence and mediate transformation, Cell Death Dis., 4, e775, 10.1038/cddis.2013.282
Menssen, 2012, The c-MYC oncoprotein, the NAMPT enzyme, the SIRT1-inhibitor DBC1, and the SIRT1 deacetylase form a positive feedback loop, Proc. Natl. Acad. Sci. U. S. A., 109, E187, 10.1073/pnas.1105304109
Yamakuchi, 2008, miR-34a repression of SIRT1 regulates apoptosis, Proc. Natl. Acad. Sci. U. S. A., 105, 13421, 10.1073/pnas.0801613105
Byles, 2012, SIRT1 induces EMT by cooperating with EMT transcription factors and enhances prostate cancer cell migration and metastasis, Oncogene, 31, 4619, 10.1038/onc.2011.612
Simic, 2013, SIRT1 suppresses the epithelial-to-mesenchymal transition in cancer metastasis and organ fibrosis, Cell. Reprorts., 3, 1175, 10.1016/j.celrep.2013.03.019
Eades, 2011, miR-200a regulates SIRT1 expression and epithelial to mesenchymal transition (EMT)-like transformation in mammary epithelial cells, J. Biol. Chem., 286, 25992, 10.1074/jbc.M111.229401
Frenzel, 2010, Targeting MYC-regulated miRNAs to combat cancer, Genes Cancer, 1, 660, 10.1177/1947601910377488
Morton, 2013, MYC-y mice: from tumour initiation to therapeutic targeting of endogenous MYC, Mol. Oncol., 7, 248, 10.1016/j.molonc.2013.02.015
Cheng, 2013, Canonical and non-canonical barriers facing antimiR cancer therapeutics, Curr. Med. Chem., 20, 3582, 10.2174/0929867311320290004
Kasinski, 2011, Epigenetics and genetics. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy, Nat. Rev. Cancer, 11, 849, 10.1038/nrc3166
Kumar, 2008, Suppression of non-small cell lung tumor development by the let-7 microRNA family, Proc. Natl. Acad. Sci. U. S. A., 105, 3903, 10.1073/pnas.0712321105
Trang, 2010, Regression of murine lung tumors by the let-7 microRNA, Oncogene, 29, 1580, 10.1038/onc.2009.445