Fast synthesis of optimal chemical reactor networks based on a universal system representation

Mingquan Xie1, Hannsjörg Freund1
1Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Lehrstuhl für Chemische Reaktionstechnik, Egerlandstrasse 3, 91058 Erlangen, Germany

Tài liệu tham khảo

Freund, 2008, Towards a methodology for the systematic analysis and design of efficient chemical processes. Part 1. From unit operations to elementary process functions, Chem. Eng. Process., 47, 2051, 10.1016/j.cep.2008.07.011 Balakrishna, 1992, Constructive targeting approaches for the synthesis of chemical reactor networks, Ind. Eng. Chem. Res., 31, 300, 10.1021/ie00001a041 Balakrishna, 1992, Targeting strategies for the synthesis and energy integration of nonisothermal reactor networks, Ind. Eng. Chem. Res., 31, 2152, 10.1021/ie00009a013 Lakshmanan, 1996, Synthesis of optimal chemical reactor networks, Ind. Eng. Chem. Res., 35, 1344, 10.1021/ie950344b Froment, 1990 Levenspiel, 1999 Baerns, 2014 Schembecker, 1995, READPERT–development, selection and design of chemical reactors, Chem. Eng. Process., 34, 317, 10.1016/0255-2701(94)04019-6 Jacobs, 2000, A knowledge-based system for reactor selection, Comput. Chem. Eng., 24, 1781, 10.1016/S0098-1354(00)00499-3 Horn, 1964, Attainable regions in chemical reaction techniques, 293 Glasser, 1987, A geometric approach to steady flow reactors: the attainable region and optimization in concentration space, Ind. Eng. Chem. Res., 26, 1803, 10.1021/ie00069a014 Hildebrandt, 1990, Geometry of the attainable region generated by reaction and mixing: with and without constraints, Ind. Eng. Chem. Res., 29, 49, 10.1021/ie00097a009 Hildebrandt, 1990, The attainable region and optimal reactor structures, Chem. Eng. Sci., 45, 2161, 10.1016/0009-2509(90)80091-R Feinberg, 1997, Optimal reactor design from a geometric viewpoint – I. Universal properties of the attainable region, Chem. Eng. Sci., 52, 1637, 10.1016/S0009-2509(96)00471-X Feinberg, 2000, Optimal reactor design from a geometric viewpoint–III. Critical CFSTRs, Chem. Eng. Sci., 55, 3553, 10.1016/S0009-2509(00)00007-5 Posada, 2008, Multi-feed attainable region construction using the Shrink-Wrap algorithm, Chem. Eng. Sci., 63, 5571, 10.1016/j.ces.2008.07.026 Feinberg, 2001, General kinetic bounds on productivity and selectivity in reactor-separator systems of arbitrary design: principles, Ind. Eng. Chem. Res., 40, 3181, 10.1021/ie000697x Feinberg, 2002, Toward a theory of process synthesis, Ind. Eng. Chem. Res., 41, 3751, 10.1021/ie010807f Agarwal, 2008, Attainable regions of reactive distillation – Part I. Single reactant non-azeotropic systems, Chem. Eng. Sci., 63, 2946, 10.1016/j.ces.2008.02.006 Agarwal, 2008, Attainable regions of reactive distillation. Part II: Single reactant azeotropic systems, Chem. Eng. Sci., 63, 2928, 10.1016/j.ces.2008.02.002 Glasser, 1997, Reactor and process synthesis, Comput. Chem. Eng., 21, S775, 10.1016/S0098-1354(97)87597-7 Burri, 2002, Infinite dimensional state-space approach to reactor network synthesis: application to attainable region construction, Comput. Chem. Eng., 26, 849, 10.1016/S0098-1354(02)00008-X Zhou, 2008, On dimensionality of attainable region construction for isothermal reactor networks, Comput. Chem. Eng., 32, 439, 10.1016/j.compchemeng.2007.02.013 Abraham, 2004, Kinetic bounds on attainability in the reactor synthesis problem, Ind. Eng. Chem. Res., 43, 449, 10.1021/ie030497w Kauchali, 2002, Linear programming formulations for attainable region analysis, Chem. Eng. Sci., 57, 2015, 10.1016/S0009-2509(02)00101-X Ming, 2013, Application of attainable region theory to batch reactors, Chem. Eng. Sci., 99, 203, 10.1016/j.ces.2013.06.001 Asiedu, 2014, Experimental simulation of a two-dimensional attainable region and its application in the optimization of production rate and process time of an adiabatic batch reactor, Ind. Eng. Chem. Res., 53, 13308, 10.1021/ie501194c Horn, 1967, The use of the adjoint variables in the development of improvement criteria for chemical reactors, J. Optim. Theory Appl., 1, 131, 10.1007/BF00936650 Jackson, 1968, Optimization of chemical reactors with respect to flow configuration, J. Optim. Theory Appl., 2, 240, 10.1007/BF00937370 Chitra, 1985, Synthesis of optimal serial reactor structures for homogeneous reactions. Part I: Isothermal reactors, AIChE J., 31, 177, 10.1002/aic.690310202 Chitra, 1985, Synthesis of optimal serial reactor structures for homogeneous reactions. Part II: Nonisothermal reactors, AIChE J., 31, 185, 10.1002/aic.690310203 Achenie, 1986, Algorithmic synthesis of chemical reactor networks using mathematical programming, Ind. Eng. Chem. Fundam., 25, 621, 10.1021/i100024a024 Achenie, 1990, A superstructure based approach to chemical reactor network synthesis, Comput. Chem. Eng., 14, 23, 10.1016/0098-1354(90)87003-8 Kokossis, 1990, Optimization of complex reactor networks – I. Isothermal operation, Chem. Eng. Sci., 45, 595, 10.1016/0009-2509(90)87004-C Kokossis, 1991, Synthesis of isothermal reactor-separator-recycle systems, Chem. Eng. Sci., 46, 1361, 10.1016/0009-2509(91)85063-4 Kokossis, 1994, Optimization of complex reactor networks – II. Nonisothermal operation, Chem. Eng. Sci., 49, 1037, 10.1016/0009-2509(94)80010-3 Linke, 2003, Attainable reaction and separation processes from a superstructure-based method, AIChE J., 49, 1451, 10.1002/aic.690490610 Recker, 2015, A unifying framework for optimization-based design of integrated reaction-separation processes, Comput. Chem. Eng., 81, 260, 10.1016/j.compchemeng.2015.03.014 Mehta, 2000, Nonisothermal synthesis of homogeneous and multiphase reactor networks, AIChE J., 46, 2256, 10.1002/aic.690461117 Peschel, 2010, Methodology for the design of optimal chemical reactors based on the concept of elementary process functions, Ind. Eng. Chem. Res., 49, 10535, 10.1021/ie100476q Cordero, 1997, Synthesis of optimal reactor networks using mathematical programming and simulated annealing, Comput. Chem. Eng., 21, S47, 10.1016/S0098-1354(97)87477-7 Marcoulaki, 1999, Scoping and screening complex reaction networks using stochastic optimization, AIChE J., 45, 1977, 10.1002/aic.690450914 Linke, 2003, On the robust application of stochastic optimisation technology for the synthesis of reaction/separation systems, Comput. Chem. Eng., 27, 733, 10.1016/S0098-1354(02)00253-3 Floudas, 1989, Global optimum search for nonconvex NLP and MINLP problems, Comput. Chem. Eng., 13, 1117, 10.1016/0098-1354(89)87016-4 Adjiman, 2000, Global optimization of mixed-integer nonlinear problems, AIChE J., 46, 1769, 10.1002/aic.690460908 Esposito, 2015, Deterministic global optimization in isothermal reactor network synthesis, J. Global Optim., 22, 59 Exler, 2008, A Tabu search-based algorithm for mixed-integer nonlinear problems and its application to integrated process and control system design, Comput. Chem. Eng., 32, 1877, 10.1016/j.compchemeng.2007.10.008 Soltani, 2015, Adiabatic reactor network synthesis using coupled genetic algorithm with quasi linear programming method, Chem. Eng. Sci., 137, 601, 10.1016/j.ces.2015.06.068 Schweiger, 1999, Optimization framework for the synthesis of chemical reactor networks, Ing. Eng. Chem. Res., 38, 744, 10.1021/ie980460p Siebenthal, 1964, Studies in optimization – VII The application of Pontryagin's methods to the control of batch and tubular reactors, Chem. Eng. Sci., 19, 747, 10.1016/0009-2509(64)85086-7 Bilous, 1956, Optimum temperature gradients in tubular reactors – I. General theory and methods, Chem. Eng. Sci., 5, 81, 10.1016/0009-2509(56)80021-3 Bilous, 1956, Optimum temperature gradients in tubular reactors – II. Numerical study, Chem. Eng. Sci., 5, 115, 10.1016/0009-2509(56)80027-4 Aris, 1960, Studies in optimization – I. The optimum design of adiabatic reactors with several beds, Chem. Eng. Sci., 12, 243, 10.1016/0009-2509(60)80002-4 Aris, 1960, Studies in optimization – II. Optimum temperature gradients in tubular reactors, Chem. Eng. Sci., 13, 18, 10.1016/0009-2509(60)80014-0 Aris, 1960, Studies in optimization – III. The optimum operating conditions in sequences of stirred tank reactors, Chem. Eng. Sci., 13, 75, 10.1016/0009-2509(60)80027-9 Aris, 1961, Studies in optimization – IV. The optimum conditions for a single reaction, Chem. Eng. Sci., 13, 197, 10.1016/0009-2509(61)80017-1 Newberger, 1971, Optimal operation of a tubular chemical reactor, AIChE J., 17, 1381, 10.1002/aic.690170619 Rojnuckarin, 1993, Optimal control of a plug flow reactor with a complex reaction mechanism, J. Phys. Chem., 97, 11689, 10.1021/j100147a023 Rojnuckarin, 1996, Methane conversion to ethylene and acetylene: optimal control with chlorine, oxygen, and heat flux, Ind. Eng. Chem. Res., 35, 683, 10.1021/ie940542n Lu, 1997, Analysis and optimization of cross-flow reactors for oxidative coupling of methane, Ind. Eng. Chem. Res., 36, 559, 10.1021/ie9605185 Paynter, 1970, Determination of optimal reactor type, Chem. Eng. Sci., 25, 1415, 10.1016/0009-2509(70)85064-3 Hillestad, 2004, A systematic generation of reactor designs: I. Isothermal conditions, Comput. Chem. Eng., 28, 2717, 10.1016/j.compchemeng.2004.07.036 Hillestad, 2005, A systematic generation of reactor designs: II. Non-isothermal conditions, Comput. Chem. Eng., 29, 1101, 10.1016/j.compchemeng.2004.11.009 Logist, 2009, Optimal design of dispersive tubular reactors at steady-state using optimal control theory, J. Process Control, 19, 1191, 10.1016/j.jprocont.2009.01.008 Freund, 2011, Model-based reactor design based on the optimal reaction route [Modellgestützter Reaktorentwurf auf Basis der optimalen Reaktionsführung], Chem. Ing. Tech., 83, 420, 10.1002/cite.201000195 Peschel, 2011, Analysis and optimal design of an ethylene oxide reactor, Chem. Eng. Sci., 66, 6453, 10.1016/j.ces.2011.08.054 Peschel, 2012, Design of optimal multiphase reactors exemplified on the hydroformylation of long chain alkenes, Chem. Eng. J., 188, 126, 10.1016/j.cej.2012.01.123 Hentschel, 2014, Model-based determination of the optimal reaction route for integrated multiphase processes [Modellbasierte ermittlung der optimalen reaktionsführung für integrierte mehrphasenprozesse], Chem. Ing. Tech., 86, 1080, 10.1002/cite.201400006 Hentschel, 2014, Model-based prediction of optimal conditions for 1-octene hydroformylation, Chem. Eng. Sci., 115, 58, 10.1016/j.ces.2013.03.051 Peschel, 2012, Optimal reaction concept and plant wide optimization of the ethylene oxide process, Chem. Eng. J., 207–208, 656, 10.1016/j.cej.2012.07.029 Hentschel, 2014, Simultaneous design of the optimal reaction and process concept for multiphase systems, Chem. Eng. Sci., 115, 69, 10.1016/j.ces.2013.09.046 Bournazou, 2013, Model based optimization of the intermittent aeration profile for SBRs under partial nitrification, Water Res., 47, 3399, 10.1016/j.watres.2013.03.044 Lang, 1999, Dynamic optimization of a batch cooling crystallization process, Ind. Eng. Chem. Res., 38, 1469, 10.1021/ie980585u Abel, 2000, Productivity optimization of an industrial semi-batch polymerization reactor under safety constraints, J. Process Control, 10, 351, 10.1016/S0959-1524(99)00049-9 Srinivasan, 2003, Characterization of optimal temperature and feed-rate policies for discontinuous two-reaction systems, Ind. Eng. Chem. Res., 42, 5607, 10.1021/ie020664c Esposito, 2000, Deterministic global optimization in nonlinear optimal control problems, J. Global Optim., 17, 97, 10.1023/A:1026578104213 Li, 2000, Integration of simulated annealing to a simulation tool for dynamic optimization of chemical processes, Chem. Eng. Process., 39, 357, 10.1016/S0255-2701(99)00100-2 Carey, 1975, Orthogonal collocation on finite elements, Chem. Eng. Sci., 30, 587, 10.1016/0009-2509(75)80031-5 Logsdon, 1989, Accurate solution of differential-algebraic optimization problems, Ind. Eng. Chem. Res., 1628, 10.1021/ie00095a010 Drud, 1985, CONOPT: a GRG code for large sparse dynamic nonlinear optimization problems, Math. Program., 153, 10.1007/BF02591747 Hairer, 1999, Stiff differential equations solved by Radau methods, J. Comput. Appl. Math., 111, 93, 10.1016/S0377-0427(99)00134-X Recker, 2012, A nonlinear programming approach to conceptual design of reaction-separation systems, Comput. Aided Chem. Eng., 30, 592, 10.1016/B978-0-444-59519-5.50119-2 Denbigh, 1958, Optimum temperature sequences in reactors, Chem. Eng. Sci., 8, 125, 10.1016/0009-2509(58)80043-3 van de Vusse, 1964, Plug-flow type reactor versus tank reactor, Chem. Eng. Sci., 19, 994, 10.1016/0009-2509(64)85109-5