Bond-slip response of steel fibers after exposure to elevated temperatures: Experimental program and design-oriented constitutive equation

Composite Structures - Tập 255 - Trang 112916 - 2021
Ramoel Serafini1,2, Ronney Rodrigues Agra1,2, Luís A.G. Bitencourt3, Albert de la Fuente4, Antonio D. de Figueiredo1
1Department of Civil Construction Engineering, Polytechnic School at the University of São Paulo Avenida Professor Almeida Prado, Travessa do Biênio, 83, 05424-970 São Paulo, Brazil
2Institute of Technological Research, Avenida Professor Almeida Prado, Travessa do Biênio, 83, 05424-970 São Paulo, Brazil
3Department of Structural and Geotechnical Engineering, Polytechnic School at the University of São Paulo, Avenida Professor Almeida Prado, Travessa do Biênio, 83, 05424-970 São Paulo, Brazil
4Department of Construction Engineering, Polytechnic University of Catalonia, Jordi Girona, 1-3, 08034 Barcelona, Spain

Tài liệu tham khảo

di Prisco, 2009, Fibre reinforced concrete: New design perspectives, Mater Struct, 42, 1261, 10.1617/s11527-009-9529-4 Manfredi, 2020, Test methods for the characterization of polypropylene fiber reinforced concrete: a comparative analysis, KSCE J Civ Eng, 24, 856, 10.1007/s12205-020-0741-7 Luccioni, 2012, A simple approach to model SFRC, Constr Build Mater, 10.1016/j.conbuildmat.2012.07.027 Banthia, 1994, Fiber reinforced concrete, ACI SP-142ACI, Detroit, MI Bentur, 2007 Abdallah, 2018, Bonding mechanisms and strength of steel fiber-reinforced cementitious composites: overview, J Mater Civ Eng, 10.1061/(ASCE)MT.1943-5533.0002154 de Oliveira, 2010, Design-oriented constitutive model for steel fiber reinforced concrete, Universitat Politècnica de Catalunya Victor M. C. F. Cunha, Steel fibre reinforced self-compacting concrete (from micromechanics to composite behavior), 2010. http://hdl.handle.net/1822/10667. Chan, 2004, Effect of silica fume on steel fiber bond characteristics in reactive powder concrete, Cem Concr Res, 10.1016/j.cemconres.2003.12.023 Laranjeira, 2010, Predicting the pullout response of inclined hooked steel fibers, Cem Concr Res, 10.1016/j.cemconres.2010.05.005 Lee, 2010, Pullout behavior of inclined steel fiber in an ultra-high strength cementitious matrix, Constr Build Mater, 10.1016/j.conbuildmat.2010.03.009 Shannag, 1997, Pullout behavior of steel fibers from cement-based composites, Cem Concr Res, 10.1016/S0008-8846(97)00061-6 Abdallah, 2017, Bond-slip behaviour of steel fibres in concrete after exposure to elevated temperatures, Constr Build Mater, 140, 542, 10.1016/j.conbuildmat.2017.02.148 Abdallah, 2017, Effect of elevated temperature on pull-out behaviour of 4DH/5DH hooked end steel fibres, Compos Struct, 165, 180, 10.1016/j.compstruct.2017.01.005 Abdallah, 2017, Pull-out behaviour of straight and hooked-end steel fibres under elevated temperatures, Cem Concr Res, 95, 132, 10.1016/j.cemconres.2017.02.010 Ruano, 2018, Steel fibers pull-out after exposure to high temperatures and its contribution to the residual mechanical behavior of high strength concrete, Constr Build Mater, 10.1016/j.conbuildmat.2017.12.129 Caggiano, 2012, A unified formulation for simulating the bond behaviour of fibres in cementitious materials, Mater Des, 42, 204, 10.1016/j.matdes.2012.05.003 Bitencourt, 2019, Numerical modeling of steel fiber reinforced concrete with a discrete and explicit representation of steel fibers, Int J Solids Struct, 159, 171, 10.1016/j.ijsolstr.2018.09.028 Serafini, 2019, Influence of fire on temperature gradient and physical-mechanical properties of macro-synthetic fiber reinforced concrete for tunnel linings, Constr Build Mater, 214, 254, 10.1016/j.conbuildmat.2019.04.133 Dantas, 2020, Influence of polypropylene microfibers (PPMF) dispersion procedure on fresh and hardened rendering mortar properties, Ambient Construído, 20, 7, 10.1590/s1678-86212020000200384 J.M. Carpio, R. Serafini, D. Rambo, A. de la Fuente, A.D. De Figueiredo, Assessment of the bearing capacity reduction of FRC elements subjected to fire, in: Proc. Fib Symp. 2019 Concr. - Innov. Mater. Des. Struct., Kraków, Poland, 2019: pp. 1378–1386. Schneider, 1988, Concrete at high temperatures – A general review, Fire Saf J, 10.1016/0379-7112(88)90033-1 Materne, 2012, Organosilane technology in coating applications: review and perspectives, Dow Corning Federation Internationale du Beton, Model Code for Concrete Structures 2010, in: Ernst & Sohn, Germany, 2013: p. 434. Judd, 2009, Data analysis: a model comparison approach to regression, ANOVA, and Beyond Bussab, 2017, Estatística básica, Saraivauni, São Paulo Vydra, 2001, Effect of temperature on porosity of concrete for nuclear-safety structures, Cem Concr Res, 31, 1023, 10.1016/S0008-8846(01)00516-6 Gallucci, 2013, Effect of temperature on the microstructure of calcium silicate hydrate (C-S-H), Cem Concr Res, 53, 185, 10.1016/j.cemconres.2013.06.008 Bažant, 1996 Cülfik, 2002, Effect of elevated temperatures on the residual mechanical properties of high-performance mortar, Cem Concr Res, 10.1016/S0008-8846(02)00709-3 Horszczaruk, 2017, The effect of elevated temperature on the properties of cement mortars containing nanosilica and heavyweight aggregates, Constr Build Mater, 10.1016/j.conbuildmat.2017.02.003 R. Serafini, R.R. Agra, R. Monte, A.D. Figueiredo, The effect of elevated temperatures on the tensile properties of steel fiber reinforced concrete by means of double edge wedge splitting (DEWS) test: Preliminary results, in: G. Pijaudier-Cabo, P. Grassl, C. La Borderie (Eds.), Proc. 10th Int. Conf. Fract. Mech. Concr. Concr. Struct., IA-FraMCoS, Bayonne, France, 2019: p. 6. doi:10.21012/FC10.240385. Serafini, 2020, The effect of elevated temperatures on the properties of cold-drawn steel fibers, Mag Concr Res, 1 L.M.S. Mendes, R. Serafini, A.D. de Figueiredo, The effect of high temperature on the mechanical properties of steel fibers and polymeric macrofibers, in: Proc. 9th Int. Conf. Concr. Under Sev. Cond. - Environ. Load., Menvia, Porto Alegre, Brazil, 2019. doi:10.31808/5ca6e03b5ca4f0d406ac888a. Salvador, 2016, Early age hydration of cement pastes with alkaline and alkali-free accelerators for sprayed concrete, Constr Build Mater, 111, 386, 10.1016/j.conbuildmat.2016.02.101 Nonat, 2004, The structure and stoichiometry of C-S-H, Cem Concr Res, 10.1016/j.cemconres.2004.04.035 Kim, 2013, Evaluation of pore structures and cracking in cement paste exposed to elevated temperatures by X-ray computed tomography, Cem Concr Res, 10.1016/j.cemconres.2013.03.020 Farage, 2003, Rehydration and microstructure of cement paste after heating at temperatures up to 300 °C, Cem Concr Res, 10.1016/S0008-8846(03)00005-X Pachta, 2018, Performance of lime-based mortars at elevated temperatures, Constr Build Mater, 189, 576, 10.1016/j.conbuildmat.2018.09.027 Ibrahim, 2012, Fire resistance of high-volume fly ash mortars with nanosilica addition, Constr Build Mater, 36, 779, 10.1016/j.conbuildmat.2012.05.028 Pi, 2019, Interfacial microstructure and bond strength of nano-SiO2-coated steel fibers in cement matrix, Cem Concr Compos, 103, 1, 10.1016/j.cemconcomp.2019.04.025 Lu, 2018, Improved interfacial strength of SiO2 coated carbon fiber in cement matrix, Cem Concr Compos, 91, 21, 10.1016/j.cemconcomp.2018.04.007 El-Didamony, 2012, Fire resistance of fired clay bricks-fly ash composite cement pastes, Ceram Int, 10.1016/j.ceramint.2011.06.050 H.F.W. Taylor Cement chemistry 2nd ed., 1997 Acad. Press 10.1016/S0958-9465(98)00023-7 Cruz, 1980, Thermal expansion of Portland cement paste, mortar and concrete at high temperatures, Fire Mater, 4, 66, 10.1002/fam.810040203 Bitencourt, 2015, A coupling technique for non-matching finite element meshes, Comput Methods Appl Mech Eng, 290, 19, 10.1016/j.cma.2015.02.025 Trindade, 2020, Design of SFRC members aided by a multiscale model: Part I – Predicting the post-cracking parameters, Compos Struct, 241 Trindade, 2020, Design of SFRC members aided by a multiscale model: Part II – Predicting the behavior of RC-SFRC beams, Compos Struct, 241 James, 2001, Mater Sci Eng Handbook Callister, 2007 Lee, 2011, Diverse embedment model for steel fiber-reinforced concrete in tension: Model development, ACI Mater J