Helicrysum italicum (roth) G. Don, a promising species for the phytostabilization of polluted mine sites: A case study in the Montevecchio mine (Sardinia, Italy)

Journal of Geochemical Exploration - Tập 242 - Trang 107088 - 2022
Greggio Nicolas1, Buscaroli Alessandro1, Zannoni Denis1, Sighinolfi Silvia1, Dinelli Enrico1
1Biological, Geological, and Environmental Sciences Department (BiGeA), Alma Mater Studiorum – Università di Bologna, Operative Unit of Ravenna, CIRSA, Via S. Alberto, 163, 48123 Ravenna, Italy

Tài liệu tham khảo

Abreu, 2008, Potential use of Erica andevalensis and Erica australis in phytoremediation of sulphide mine environments: São Domingos, Portugal, J. Geochem. Explor., 96, 210, 10.1016/j.gexplo.2007.04.007 An, 2004, Combined effect of copper, cadmium, and lead upon Cucumis sativus growth and bioaccumulation, Sci. Total Environ., 326, 85, 10.1016/j.scitotenv.2004.01.002 Arbogast, 2000, Vol. 1191 Armstrong, 1988, Phragmites australis–A preliminary study of soil-oxidizing sites and internal gas transport pathways, New Phytol., 108, 373, 10.1111/j.1469-8137.1988.tb04177.x Ashraf, 2020, Lead (Pb) distribution and accumulation in different plant parts and its associations with grain Pb contents in fragrant rice, Chemosphere, 248, 10.1016/j.chemosphere.2020.126003 Bacchetta, 2018, Element tolerance capability of Helichrysum microphyllum Cambess. subsp. tyrrhenicum Bacch., Brullo & Giusso: a candidate for phytostabilization in abandoned mine sites, Bull. Environ. Contam. Toxicol., 101, 758, 10.1007/s00128-018-2463-9 Bacha, 1977, Characteristics of coatings formed on rice roots as affected by iron and manganese additions, Soil Sci. Soc. Am. J., 41, 931, 10.2136/sssaj1977.03615995004100050025x Baker, 2000, Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils, 85 Banda, 2021, Five-weeks pot trial evaluation of phytoremediation potential of Helichrysum splendidum Less. for copper- and lead-contaminated soils, Int. J. Environ. Sci. Technol. Barbafieri, 2011, Uptake of heavy elements by native species growing in a mining area in Sardinia, Italy: discovering native flora for Phytoremediation, Int. J. Phytorem., 13, 985, 10.1080/15226514.2010.549858 Bianchini, 2009, Partitioning the relative contributions of inorganic plant composition and soil characteristics to the quality of Helichrysum italicum subsp. italicum (Roth) G. Don fil. essential oil, Chem. Biodivers., 6, 1014, 10.1002/cbdv.200800328 Bini, 2014, Potentially harmful elements and human health, 401 Bini, 2017, Preliminary observations on the element tolerance and resilience capacity of Helichrysum Italicum (Roth) G. Don growing on mine soils, EQA Int. J. Environ. Qual., 21, 41 Boechat, 2016, Accumulation and translocation of heavy metal by spontaneous plants growing on multi-metal-contaminated site in the Southeast of Rio Grande do Sul state, Brazil, Environ. Sci. Pollut. Res., 23, 2371, 10.1007/s11356-015-5342-5 Boi, 2019, Effects of zinc and lead on seed germination of Helichrysum microphyllum subsp. tyrrhenicum, an element-tolerant plant, Int. J. Environ. Sci. Technol., 1 Boi, 2020, Mineralogy and Zn chemical speciation in a soil-plant system from an element-extreme environment: a study on Helichrysum microphyllum subsp. tyrrhenicum (Campo Pisano Mine, SW Sardinia, Italy)., Minerals, 10, 259, 10.3390/min10030259 Bolan, 2011, Phytostabilization: a green approach to contaminant containment, Adv. Agron., 112, 145, 10.1016/B978-0-12-385538-1.00004-4 Boni, 1999, Potential environmental hazard in the mining district of southern Iglesiente (SW Sardinia, Italy), J. Geochem. Explor., 67, 417, 10.1016/S0375-6742(99)00078-3 Brady, 2010 Brunetti, 2018, Remediation of a heavy elements contaminated soil using mycorrhized and non-mycorrhized Helichrysum italicum (Roth) Don, Land Degrad. Dev., 29, 91, 10.1002/ldr.2842 Bullitta, 2010, 116 Buscaroli, 2017, An overview of indexes to evaluate terrestrial plants for phytoremediation purposes, Ecol. Indic., 82, 367, 10.1016/j.ecolind.2017.07.003 Buscaroli, 2017, Assessment of element accumulation capacity of Dittrichia viscosa (L.) Greuter in two different Italian mine areas for contaminated soils remediation, J. Geochem. Explor., 182, 123, 10.1016/j.gexplo.2016.10.001 Caboi, 1993, The abandoned Pb-Zn mine of Ingurtosu, Sardinia (Italy), Eng. Geol., 34, 211, 10.1016/0013-7952(93)90090-Y Camizuli, 2018, Trace elements from historical mining sites and past metallurgical activity remain bioavailable to wildlife today, Sci. Rep., 8, 1, 10.1038/s41598-018-20983-0 Cao, 2004, Selection of plants for zinc and lead phytoremediation, J. Environ. Sci. Health, 39, 1011, 10.1081/ESE-120028410 Choudhary, 1995, Effect of Zn on the concentration of Cd and Zn in plant tissue of two durum wheat lines, Can. J. Plant Sci., 75, 445, 10.4141/cjps95-074 Concas, 2006, Mobility of heavy elements from tailings to stream waters in a mining activity contaminated site, Chemosphere, 63, 244, 10.1016/j.chemosphere.2005.08.024 Conesa, 2006, Heavy element accumulation and tolerance in plants from mine tailings of the semiarid Cartagena–La Unión mining district (SE Spain), Sci. Total Environ., 366, 1, 10.1016/j.scitotenv.2005.12.008 Conesa, 2011, Influence of soil properties on trace element availability and plant accumulation in a Mediterranean salt marsh polluted by mining wastes: implications for phytomanagement, Sci. Total Environ., 409, 4470, 10.1016/j.scitotenv.2011.07.049 Cuccuru, 2016, Structural and metallogenic map of late Variscan Arbus Pluton (SW Sardinia, Italy), J. Maps, 12, 860, 10.1080/17445647.2015.1091750 Day, 1965, Particle fractionation and particle-size analysis, 545 De Agostini, 2020, Heavy metal tolerance of orchid populations growing on abandoned mine tailings: a case study in Sardinia Island (Italy), Ecotoxicol. Environ. Saf., 189, 10.1016/j.ecoenv.2019.110018 Dinu, 2020, Translocation and accumulation of heavy metals in Ocimum basilicum L. plants grown in a mining-contaminated soil, J. Soils Sediments, 20, 2141, 10.1007/s11368-019-02550-w Dore, 2020, Natural attenuation can lead to environmental resilience in mine environment, Appl. Geochem., 10.1016/j.apgeochem.2020.104597 Eurostat, 2017 Fernández, 2017, Phytoremediation capability of native plant species living on Pb-Zn and Hg-As mining wastes in the Cantabrian range, north of Spain, J. Geochem. Explor., 174, 10, 10.1016/j.gexplo.2016.05.015 Fitamo, 2010, Assessment of plants growing on gold mine wastes for their potential to remove heavy metals from contaminated soils, Int. J. Environ. Stud., 67, 705, 10.1080/00207233.2010.513587 Franzini, 1972, A simple method to evaluate the matrix effects in X-Ray fluorescence analysis, X-Ray Spectrom., 1, 151, 10.1002/xrs.1300010406 Galbany-Casals, 2011, Genetic variation in Mediterranean Helichrysum italicum (Asteraceae; Gnaphalieae): do disjunct populations of subsp. microphyllum have a common origin?, Plant Biol., 13, 678, 10.1111/j.1438-8677.2010.00411.x Galeas, 2008, Selenium hyperaccumulation reduces plant arthropod loads in the field, New Phytol., 177, 715, 10.1111/j.1469-8137.2007.02285.x García, 2002, Phytoremediation of zinc polluted soils by Mediterranean plant species: usefulness of bioaccumulation and tolerance capabilities, 140 García, 2005, Evaluation of heavy metal availability prior to an in situ soil phytoremediation program, Biodegradation, 16, 187, 10.1007/s10532-004-4880-1 Gonçalves, 2020, Phytoremediation capacity, growth and physiological responses of Crambe abyssinica Hochst on soil contaminated with Cd and Pb, J. Environ. Manag., 262, 10.1016/j.jenvman.2020.110342 Green, 1977, Oxidation of ferrous iron by rice (Oryza sativa L.) roots: a mechanism for waterlogging tolerance?, J. Exp. Bot., 28, 678, 10.1093/jxb/28.3.678 Hart, 2002, Transport interactions between cadmium and zinc in roots of bread and durum wheat seedlings, Physiol. Plant., 116, 73, 10.1034/j.1399-3054.2002.1160109.x Heiri, 2001, Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results, J. Paleolimnol., 25, 101, 10.1023/A:1008119611481 Hesami, 2018, Lead, zinc, and cadmium uptake, accumulation, and phytoremediation by plants growing around Tang-e Douzan lead–zinc mine, Iran, Environ. Sci. Pollut. Res., 25, 8701, 10.1007/s11356-017-1156-y ISO, 1995 ISO, 1995 ISO, 1998 ISO, 2001 ISPRA Italian Government Israr, 2011, Interactive effects of lead, copper, nickel and zinc on growth, metal uptake and antioxidative metabolism of Sesbania drummondii, J. Hazard. Mater., 186, 1520, 10.1016/j.jhazmat.2010.12.021 Italian Government, 2006 Jabeen, 2009, Phytoremediation of heavy metals: physiological and molecular mechanisms, Bot. Rev., 75, 339, 10.1007/s12229-009-9036-x Kabata-Pendias, 2010 Khalid, 1980, Some effects of nickel toxicity on rye grass, Plant Soil, 55, 139, 10.1007/BF02149717 Koosaletse-Mswela, 2015, Quantitative mapping of elemental distribution in leaves of the metallophytes Helichrysum candolleanum, Blepharis aspera, and Blepharis diversispina from Selkirk Cu–Ni mine, Botswana, Nucl. Instrum. Methods Phys. Res., Sect. B, 363, 188, 10.1016/j.nimb.2015.09.005 Kumpiene, 2017, Assessment of methods for determining bioavailability of trace elements in soils: a review, Pedosphere, 27, 389, 10.1016/S1002-0160(17)60337-0 Kutrowska, 2017, Effects of binary metal combinations on zinc, copper, cadmium and lead uptake and distribution in Brassica juncea, J. Trace Elem. Med. Biol., 44, 32, 10.1016/j.jtemb.2017.05.007 Lancianese, 2015, Different spatial methods in regional geochemical mapping at high density sampling: an application on stream sediment of Romagna Apennines, Northern Italy, J. Geochem. Explor., 154, 143, 10.1016/j.gexplo.2014.12.014 Leita, 1989, Anomalous contents of heavy metals in soils and vegetation of a mine area in SW Sardinia, Italy, Water Air Soil Pollut., 48, 423, 10.1007/BF00283340 Leoni, 1976, X-ray fluorescence analysis of 29 trace elements in rock and mineral standard, Rend. Soc. Ital. Mineral. Petrol., 32, 497 Lin, 2003, China's land resources and land-use change: insights from the 1996 land survey, Land Use Policy, 20, 87, 10.1016/S0264-8377(03)00007-3 Lindsay, 1978, Development of a DTPA soil test for zinc, iron, manganese and copper, Soil Sci. Soc. Am. J., 42, 421, 10.2136/sssaj1978.03615995004200030009x Mahar, 2016, Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review, Ecotoxicol. Environ. Saf., 126, 111, 10.1016/j.ecoenv.2015.12.023 Martin, 2012, Cadmium exclusion a key factor in differential Cd-resistance in Thlaspi arvense ecotypes, Biol. Plant., 56, 729, 10.1007/s10535-012-0056-8 Martínez-Sánchez, 2012, Trace element accumulation in plants from an aridic area affected by mining activities, J. Geochem. Explor., 123, 8, 10.1016/j.gexplo.2012.01.007 Melito, 2016, Altitude and climate influence Helichrysum italicum subsp. microphyllum essential oils composition, Ind. Crop. Prod., 80, 242, 10.1016/j.indcrop.2015.11.014 Mendez, 2008, Phytoremediation of mine tailings in temperate and arid environments, Rev. Environ. Sci. Biotechnol., 7, 47, 10.1007/s11157-007-9125-4 Meuser, 2013, vol. 23 Mills Moroni, 2019, The Pb-Zn-Ag vein system at Montevecchio-Ingurtosu, southwestern Sardinia, Italy: a summary of previous knowledge and new mineralogical, fluid inclusion, and isotopic data, Ore Geol. Rev., 115, 10.1016/j.oregeorev.2019.103194 Nadimi-Goki, 2014, Assessment of total soil and plant elements in rice-based production systems in NE Italy, J. Geochem. Explor., 147, 200, 10.1016/j.gexplo.2014.07.008 Ninčević, 2019, Helichrysum italicum (Roth) G. Don: taxonomy, biological activity, biochemical and genetic diversity, Ind. Crop. Prod., 138, 10.1016/j.indcrop.2019.111487 Nkoane, 2005, Identification of Cu and Ni indicator plants from mineralised locations in Botswana, J. Geochem. Explor., 86, 130, 10.1016/j.gexplo.2005.03.003 Nkoane, 2007, Examination of Blepharis aspera as a possible Cu–Ni indicator plant, S. Afr. J. Sci., 103, 363 Oliver, 1994, Vol. 23, 705 Pandey, 2019, Phytoremediation: from theory toward practice, 1 Pandey, 2015, Sustainable phytoremediation based on naturally colonizing and economically valuable plants, J. Clean. Prod., 86, 37, 10.1016/j.jclepro.2014.08.030 Pandey, 2016, Energy crops in sustainable phytoremediation, Renew. Sust. Energ. Rev., 54, 58, 10.1016/j.rser.2015.09.078 Perez, 2012 Poschenrieder, 2012, Smilax aspera L. an evergreen Mediterranean climber for phytoremediation, J. Geochem. Explor., 123, 41, 10.1016/j.gexplo.2012.07.012 Pourrut, 2011, Lead uptake, toxicity, and detoxification in plants, Rev. Environ. Contam. Toxicol., 213, 113 Reimann, 2014, Chemistry of Europe’s agricultural soils-Part B: General background information and further analysis of the GEMAS data set, Geol. Jahrb. RER Rimondi, 2021, Bioaccessible arsenic in soil of thermal areas of Viterbo, Central Italy: implications for human health risk, Environ. Geochem. Health, 1–21 Rizzi, 2004, Soil physical changes and plant availability of Zn and Pb in a treatability test of phytostabilization, Chemosphere, 57, 1039, 10.1016/j.chemosphere.2004.08.048 Rogosic, 2006, Sheep and goat preference for and nutritional value of Mediterranean maquis shrubs, Small Rumin. Res., 64, 169, 10.1016/j.smallrumres.2005.04.017 Shapiro, 1965, An analysis of variance test for normality (complete samples), Biometrika, 52, 591, 10.1093/biomet/52.3-4.591 Sidhu, 2017, Tolerance and hyperaccumulation of cadmium by a wild, unpalatable herb Coronopus didymus (L.) Sm. (Brassicaceae), Ecotoxicol. Environ. Saf., 135, 209, 10.1016/j.ecoenv.2016.10.001 Singh, 2011, Safety of food crops on land contaminated with trace elements, J. Sci. Food Agric., 91, 1349, 10.1002/jsfa.4355 Spearman, 1904, The proof and measurement of association between two things, Am. J. Psychol., 15, 72, 10.2307/1412159 Terry, 1980, Limiting factors in photosynthesis: I. Use of iron stress to control photochemical capacity in vivo, Plant Physiol., 65, 114, 10.1104/pp.65.1.114 Torres, 2016, Growth and micronutrient concentration in maize plants under nickel and lime applications, Rev. Caatinga, 29, 796, 10.1590/1983-21252016v29n403rc USEPA, 2000 Vamerali, 2010, Field crops for phytoremediation of metal-contaminated land. A review, Environ. Chem. Lett., 8, 1, 10.1007/s10311-009-0268-0 Van der Ent, 2013, Hyperaccumulators of metal and metalloid trace elements: facts and fiction, Plant Soil, 362, 319, 10.1007/s11104-012-1287-3 Wang, 2019, Bioconcentration and translocation of heavy elements in the soil-plants system in Machangqing copper mine, Yunnan Province, China, J. Geochem. Explor., 200, 159, 10.1016/j.gexplo.2019.02.005 Wang, 2021, The geochemical behavior of trace metals and nutrients in submerged sediments of the Three Gorges Reservoir and a critical review on risk assessment methods, Environ. Sci. Pollut. Res., 1–16 Wong, 1986, Interactive effects of lead, cadmium and copper combinations in the uptake of metals and growth of Brassica chinensis, Environ. Exp. Bot., 26, 331, 10.1016/0098-8472(86)90020-1 Yao, 2012, Review on remediation technologies of soil contaminated by heavy metals, Procedia Environ. Sci., 16, 722, 10.1016/j.proenv.2012.10.099 Yoon, 2006, Accumulation of Pb, Cu and Zn in native plants growing on a contaminated Florida site, Sci. Total Environ., 368, 456, 10.1016/j.scitotenv.2006.01.016 Zhu, 2012, Cell wall polysaccharides are involved in P-deficiency-induced Cd exclusion in Arabidopsis thaliana, Planta, 236, 989, 10.1007/s00425-012-1652-8