Direct evidence of CRISPR-Cas9-mediated mitochondrial genome editing

The Innovation - Tập 3 - Trang 100329 - 2022
Rui Bi1,2,3, Yu Li1,2, Min Xu1,2, Quanzhen Zheng1, Deng-Feng Zhang1,2, Xiao Li1,2, Guolan Ma4, Bolin Xiang1,2, Xiaojia Zhu1,2, Hui Zhao5,6, Xingxu Huang7, Ping Zheng2,6,8,9, Yong-Gang Yao1,2,3,6
1Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
2Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
3Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
4Kunming Biological Diversity Regional Center of Large Apparatus and Equipments, Public Technology Service Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
5Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, and Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, Hong Kong SAR, China
6KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
7School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
8State Key Laboratory of Genetic Resources and Evolution, and Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
9Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650204, China

Tài liệu tham khảo

Schon, 2012, Human mitochondrial DNA: roles of inherited and somatic mutations, Nat. Rev. Genet., 13, 878, 10.1038/nrg3275 Rahman, 2018, Mitochondrial medicine in the omics era, Lancet, 391, 2560, 10.1016/S0140-6736(18)30727-X Falkenberg, 2007, DNA replication and transcription in mammalian mitochondria, Annu. Rev. Biochem., 76, 679, 10.1146/annurev.biochem.76.060305.152028 Patananan, 2016, Modifying the mitochondrial genome, Cell Metab., 23, 785, 10.1016/j.cmet.2016.04.004 Yao, 2015, Mitochondrial DNA mutations in single human blood cells, Mutat. Res., 779, 68, 10.1016/j.mrfmmm.2015.06.009 Russell, 2014, Mitochondrial DNA disease-molecular insights and potential routes to a cure, Exp. Cell Res., 325, 38, 10.1016/j.yexcr.2014.03.012 Taylor, 2005, Mitochondrial DNA mutations in human disease, Nat. Rev. Genet., 6, 389, 10.1038/nrg1606 Wallace, 2013, Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease, Cold Spring Harb. Perspect. Biol., 5, a021220, 10.1101/cshperspect.a021220 Ellouze, 2008, Optimized allotopic expression of the human mitochondrial ND4 prevents blindness in a rat model of mitochondrial dysfunction, Am. J. Hum. Genet., 83, 373, 10.1016/j.ajhg.2008.08.013 Bi, 2017, Leber hereditary optic neuropathy: a mitochondrial disease unique in many ways, Handb. Exp. Pharmacol., 240, 309, 10.1007/164_2016_1 Herbert, 2018, Progress in mitochondrial replacement therapies, Nat. Rev. Mol. Cell Biol., 19, 71, 10.1038/nrm.2018.3 Kang, 2016, Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial DNA mutations, Nature, 540, 270, 10.1038/nature20592 Minczuk, 2008, Development of a single-chain, quasi-dimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNA, Nucleic Acids Res., 36, 3926, 10.1093/nar/gkn313 Tanaka, 2002, Gene therapy for mitochondrial disease by delivering restriction endonuclease SmaI into mitochondria, J. Biomed. Sci., 9, 534 Gammage, 2018, Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo, Nat. Med., 24, 1691, 10.1038/s41591-018-0165-9 Bacman, 2012, Manipulation of mtDNA heteroplasmy in all striated muscles of newborn mice by AAV9-mediated delivery of a mitochondria-targeted restriction endonuclease, Gene Ther., 19, 1101, 10.1038/gt.2011.196 Gammage, 2014, Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations, EMBO Mol. Med., 6, 458, 10.1002/emmm.201303672 Bacman, 2018, MitoTALEN reduces mutant mtDNA load and restores tRNA(Ala) levels in a mouse model of heteroplasmic mtDNA mutation, Nat. Med., 24, 1696, 10.1038/s41591-018-0166-8 Pereira, 2018, mitoTev-TALE: a monomeric DNA editing enzyme to reduce mutant mitochondrial DNA levels, EMBO Mol. Med., 10, e8084, 10.15252/emmm.201708084 Reddy, 2015, Selective elimination of mitochondrial mutations in the germline by genome editing, Cell, 161, 459, 10.1016/j.cell.2015.03.051 Minczuk, 2006, Sequence-specific modification of mitochondrial DNA using a chimeric zinc finger methylase, Proc. Natl. Acad. Sci. USA, 103, 19689, 10.1073/pnas.0609502103 Bacman, 2013, Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs, Nat. Med., 19, 1111, 10.1038/nm.3261 Zekonyte, 2021, Mitochondrial targeted meganuclease as a platform to eliminate mutant mtDNA in vivo, Nat. Commun., 12, 3210, 10.1038/s41467-021-23561-7 Peeva, 2018, Linear mitochondrial DNA is rapidly degraded by components of the replication machinery, Nat. Commun., 9, 1727, 10.1038/s41467-018-04131-w Moretton, 2017, Selective mitochondrial DNA degradation following double-strand breaks, PLoS One, 12, e0176795, 10.1371/journal.pone.0176795 Mok, 2020, A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing, Nature, 583, 631, 10.1038/s41586-020-2477-4 Lee, 2021, Mitochondrial DNA editing in mice with DddA-TALE fusion deaminases, Nat. Commun., 12, 1190, 10.1038/s41467-021-21464-1 Guo, 2021, Precision modeling of mitochondrial diseases in zebrafish via DdCBE-mediated mtDNA base editing, Cell Discov., 7, 78, 10.1038/s41421-021-00307-9 Kang, 2021, Chloroplast and mitochondrial DNA editing in plants, Nat. Plants, 7, 899, 10.1038/s41477-021-00943-9 Chen, 2022, DdCBE-mediated mitochondrial base editing in human 3PN embryos, Cell Discov., 8, 8, 10.1038/s41421-021-00358-y Wei, 2022, Human cleaving embryos enable efficient mitochondrial base-editing with DdCBE, Cell Discov., 8, 7, 10.1038/s41421-021-00372-0 Lim, 2022, Nuclear and mitochondrial DNA editing in human cells with zinc finger deaminases, Nat. Commun., 13, 366, 10.1038/s41467-022-27962-0 Cho, 2022, Targeted A-to-G base editing in human mitochondrial DNA with programmable deaminases, Cell, 185, 1764, 10.1016/j.cell.2022.03.039 Wei, 2022, Mitochondrial base editor DdCBE causes substantial DNA off-target editing in nuclear genome of embryos, Cell Discov., 8, 27, 10.1038/s41421-022-00391-5 Lei, 2022, Mitochondrial base editor induces substantial nuclear off-target mutations, Nature, 606, 804, 10.1038/s41586-022-04836-5 Hsu, 2014, Development and applications of CRISPR-Cas9 for genome engineering, Cell, 157, 1262, 10.1016/j.cell.2014.05.010 Ran, 2013, Genome engineering using the CRISPR-Cas9 system, Nat. Protoc., 8, 2281, 10.1038/nprot.2013.143 Gaj, 2013, ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering, Trends Biotechnol., 31, 397, 10.1016/j.tibtech.2013.04.004 Gammage, 2018, Mitochondrial genome engineering: the revolution may not be CRISPR-Ized, Trends Genet., 34, 101, 10.1016/j.tig.2017.11.001 Loutre, 2018, Can mitochondrial DNA be CRISPRized: Pro and Contra, IUBMB Life, 70, 1233, 10.1002/iub.1919 Jo, 2015, Efficient mitochondrial genome editing by CRISPR/Cas9, BioMed Res. Int., 2015, 305716, 10.1155/2015/305716 Bian, 2019, Knock-in strategy for editing human and zebrafish mitochondrial DNA using mito-CRISPR/Cas9 system, ACS Synth. Biol., 8, 621, 10.1021/acssynbio.8b00411 Antón, 2020, Mitochondrial import, health and mtDNA copy number variability seen when using type II and type V CRISPR effectors, J. Cell Sci., 133, jcs248468, 10.1242/jcs.248468 Wang, 2021, CRISPR/Cas9-mediated mutagenesis at microhomologous regions of human mitochondrial genome, Sci. China Life Sci., 64, 1463, 10.1007/s11427-020-1819-8 Hussain, 2021, Adapting CRISPR/Cas9 system for targeting mitochondrial genome, Front. Genet., 12, 627050, 10.3389/fgene.2021.627050 Hofreiter, 2001, DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA, Nucleic Acids Res., 29, 4793, 10.1093/nar/29.23.4793 Liu, 2002, Signal and noise in bridging PCR, BMC Biotechnol., 2, 13, 10.1186/1472-6750-2-13 Gilbert, 2003, Characterization of genetic miscoding lesions caused by postmortem damage, Am. J. Hum. Genet., 72, 48, 10.1086/345379 Sylvestre, 2003, The role of the 3' untranslated region in mRNA sorting to the vicinity of mitochondria is conserved from yeast to human cells, Mol. Biol. Cell, 14, 3848, 10.1091/mbc.e03-02-0074 Ginsberg, 2003, PKA-dependent binding of mRNA to the mitochondrial AKAP121 protein, J. Mol. Biol., 327, 885, 10.1016/S0022-2836(03)00173-6 Gao, 2017, Mutation of nucleotides around the +1 position of type 3 polymerase III promoters: the effect on transcriptional activity and start site usage, Transcription, 8, 275, 10.1080/21541264.2017.1322170 Zhang, 2017, Perfectly matched 20-nucleotide guide RNA sequences enable robust genome editing using high-fidelity SpCas9 nucleases, Genome Biol., 18, 191, 10.1186/s13059-017-1325-9 He, 2015, PRX1 knockdown potentiates vitamin K3 toxicity in cancer cells: a potential new therapeutic perspective for an old drug, J. Exp. Clin. Cancer Res., 34, 152, 10.1186/s13046-015-0270-2 Feng, 2013, Decreased mitochondrial DNA copy number in the hippocampus and peripheral blood during opiate addiction is mediated by autophagy and can be salvaged by melatonin, Autophagy, 9, 1395, 10.4161/auto.25468 Kajander, 2001, Prominent mitochondrial DNA recombination intermediates in human heart muscle, EMBO Rep., 2, 1007, 10.1093/embo-reports/kve233 D'Aurelio, 2004, Heterologous mitochondrial DNA recombination in human cells, Hum. Mol. Genet., 13, 3171, 10.1093/hmg/ddh326 Tadi, 2016, Microhomology-mediated end joining is the principal mediator of double-strand break repair during mitochondrial DNA lesions, Mol. Biol. Cell, 27, 223, 10.1091/mbc.e15-05-0260 Dahal, 2018, Homologous recombination-mediated repair of DNA double-strand breaks operates in mammalian mitochondria, Cell. Mol. Life Sci., 75, 1641, 10.1007/s00018-017-2702-y Zhang, 2022, Homology-based repair induced by CRISPR-Cas nucleases in mammalian embryo genome editing, Protein Cell, 13, 316, 10.1007/s13238-021-00838-7 Qi, 2013, Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression, Cell, 152, 1173, 10.1016/j.cell.2013.02.022 Shen, 2014, Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects, Nat. Methods, 11, 399, 10.1038/nmeth.2857 Parr, 2006, The pseudo-mitochondrial genome influences mistakes in heteroplasmy interpretation, BMC Genom., 7, 185, 10.1186/1471-2164-7-185 Andrews, 1999, Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA, Nat. Genet., 23, 147, 10.1038/13779 Tsuji, 2012, Mammalian NUMT insertion is non-random, Nucleic Acids Res., 40, 9073, 10.1093/nar/gks424 Ardui, 2018, Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics, Nucleic Acids Res., 46, 2159, 10.1093/nar/gky066 Sage, 2010, Discovery of a novel function for human Rad51: maintenance of the mitochondrial genome, J. Biol. Chem., 285, 18984, 10.1074/jbc.M109.099846 Mishra, 2018, RAD51C/XRCC3 facilitates mitochondrial DNA replication and maintains integrity of the mitochondrial genome, Mol. Cell Biol., 38, e00489-17, 10.1128/MCB.00489-17 Song, 2016, RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency, Nat. Commun., 7, 10548, 10.1038/ncomms10548 Pinder, 2015, Nuclear domain 'knock-in' screen for the evaluation and identification of small molecule enhancers of CRISPR-based genome editing, Nucleic Acids Res., 43, 9379, 10.1093/nar/gkv993 Jayathilaka, 2008, A chemical compound that stimulates the human homologous recombination protein RAD51, Proc. Natl. Acad. Sci. USA, 105, 15848, 10.1073/pnas.0808046105 Budke, 2012, RI-1: a chemical inhibitor of RAD51 that disrupts homologous recombination in human cells, Nucleic Acids Res., 40, 7347, 10.1093/nar/gks353 Yao, 2008, Pseudomitochondrial genome haunts disease studies, J. Med. Genet., 45, 769, 10.1136/jmg.2008.059782 Musumeci, 2000, Intragenic inversion of mtDNA: a new type of pathogenic mutation in a patient with mitochondrial myopathy, Am. J. Hum. Genet., 66, 1900, 10.1086/302927 Blakely, 2006, Sporadic intragenic inversion of the mitochondrial DNA MTND1 gene causing fatal infantile lactic acidosis, Pediatr. Res., 59, 440, 10.1203/01.pdr.0000198771.78290.c4 King, 1988, Injection of mitochondria into human cells leads to a rapid replacement of the endogenous mitochondrial DNA, Cell, 52, 811, 10.1016/0092-8674(88)90423-0 Hagström, 2014, No recombination of mtDNA after heteroplasmy for 50 generations in the mouse maternal germline, Nucleic Acids Res., 42, 1111, 10.1093/nar/gkt969 Koulintchenko, 2006, Natural competence of mammalian mitochondria allows the molecular investigation of mitochondrial gene expression, Hum. Mol. Genet., 15, 143, 10.1093/hmg/ddi435 Tarasenko, 2021, Plant mitochondria import DNA via alternative membrane complexes involving various VDAC isoforms, Mitochondrion, 60, 43, 10.1016/j.mito.2021.07.006 Liu, 2020, Identification of mecciRNAs and their roles in the mitochondrial entry of proteins, Sci China Life Sci., 63, 1429, 10.1007/s11427-020-1631-9 Boesch, 2010, Membrane association of mitochondrial DNA facilitates base excision repair in mammalian mitochondria, Nucleic Acids Res., 38, 1478, 10.1093/nar/gkp1143 Wang, 2010, PNPASE regulates RNA import into mitochondria, Cell, 142, 456, 10.1016/j.cell.2010.06.035 Chen, 2022, Synergistic engineering of CRISPR-Cas nucleases enables robust mammalian genome editing, Innovation, 3, 100264