Direct evidence of CRISPR-Cas9-mediated mitochondrial genome editing
Tài liệu tham khảo
Schon, 2012, Human mitochondrial DNA: roles of inherited and somatic mutations, Nat. Rev. Genet., 13, 878, 10.1038/nrg3275
Rahman, 2018, Mitochondrial medicine in the omics era, Lancet, 391, 2560, 10.1016/S0140-6736(18)30727-X
Falkenberg, 2007, DNA replication and transcription in mammalian mitochondria, Annu. Rev. Biochem., 76, 679, 10.1146/annurev.biochem.76.060305.152028
Patananan, 2016, Modifying the mitochondrial genome, Cell Metab., 23, 785, 10.1016/j.cmet.2016.04.004
Yao, 2015, Mitochondrial DNA mutations in single human blood cells, Mutat. Res., 779, 68, 10.1016/j.mrfmmm.2015.06.009
Russell, 2014, Mitochondrial DNA disease-molecular insights and potential routes to a cure, Exp. Cell Res., 325, 38, 10.1016/j.yexcr.2014.03.012
Taylor, 2005, Mitochondrial DNA mutations in human disease, Nat. Rev. Genet., 6, 389, 10.1038/nrg1606
Wallace, 2013, Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease, Cold Spring Harb. Perspect. Biol., 5, a021220, 10.1101/cshperspect.a021220
Ellouze, 2008, Optimized allotopic expression of the human mitochondrial ND4 prevents blindness in a rat model of mitochondrial dysfunction, Am. J. Hum. Genet., 83, 373, 10.1016/j.ajhg.2008.08.013
Bi, 2017, Leber hereditary optic neuropathy: a mitochondrial disease unique in many ways, Handb. Exp. Pharmacol., 240, 309, 10.1007/164_2016_1
Herbert, 2018, Progress in mitochondrial replacement therapies, Nat. Rev. Mol. Cell Biol., 19, 71, 10.1038/nrm.2018.3
Kang, 2016, Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial DNA mutations, Nature, 540, 270, 10.1038/nature20592
Minczuk, 2008, Development of a single-chain, quasi-dimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNA, Nucleic Acids Res., 36, 3926, 10.1093/nar/gkn313
Tanaka, 2002, Gene therapy for mitochondrial disease by delivering restriction endonuclease SmaI into mitochondria, J. Biomed. Sci., 9, 534
Gammage, 2018, Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo, Nat. Med., 24, 1691, 10.1038/s41591-018-0165-9
Bacman, 2012, Manipulation of mtDNA heteroplasmy in all striated muscles of newborn mice by AAV9-mediated delivery of a mitochondria-targeted restriction endonuclease, Gene Ther., 19, 1101, 10.1038/gt.2011.196
Gammage, 2014, Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations, EMBO Mol. Med., 6, 458, 10.1002/emmm.201303672
Bacman, 2018, MitoTALEN reduces mutant mtDNA load and restores tRNA(Ala) levels in a mouse model of heteroplasmic mtDNA mutation, Nat. Med., 24, 1696, 10.1038/s41591-018-0166-8
Pereira, 2018, mitoTev-TALE: a monomeric DNA editing enzyme to reduce mutant mitochondrial DNA levels, EMBO Mol. Med., 10, e8084, 10.15252/emmm.201708084
Reddy, 2015, Selective elimination of mitochondrial mutations in the germline by genome editing, Cell, 161, 459, 10.1016/j.cell.2015.03.051
Minczuk, 2006, Sequence-specific modification of mitochondrial DNA using a chimeric zinc finger methylase, Proc. Natl. Acad. Sci. USA, 103, 19689, 10.1073/pnas.0609502103
Bacman, 2013, Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs, Nat. Med., 19, 1111, 10.1038/nm.3261
Zekonyte, 2021, Mitochondrial targeted meganuclease as a platform to eliminate mutant mtDNA in vivo, Nat. Commun., 12, 3210, 10.1038/s41467-021-23561-7
Peeva, 2018, Linear mitochondrial DNA is rapidly degraded by components of the replication machinery, Nat. Commun., 9, 1727, 10.1038/s41467-018-04131-w
Moretton, 2017, Selective mitochondrial DNA degradation following double-strand breaks, PLoS One, 12, e0176795, 10.1371/journal.pone.0176795
Mok, 2020, A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing, Nature, 583, 631, 10.1038/s41586-020-2477-4
Lee, 2021, Mitochondrial DNA editing in mice with DddA-TALE fusion deaminases, Nat. Commun., 12, 1190, 10.1038/s41467-021-21464-1
Guo, 2021, Precision modeling of mitochondrial diseases in zebrafish via DdCBE-mediated mtDNA base editing, Cell Discov., 7, 78, 10.1038/s41421-021-00307-9
Kang, 2021, Chloroplast and mitochondrial DNA editing in plants, Nat. Plants, 7, 899, 10.1038/s41477-021-00943-9
Chen, 2022, DdCBE-mediated mitochondrial base editing in human 3PN embryos, Cell Discov., 8, 8, 10.1038/s41421-021-00358-y
Wei, 2022, Human cleaving embryos enable efficient mitochondrial base-editing with DdCBE, Cell Discov., 8, 7, 10.1038/s41421-021-00372-0
Lim, 2022, Nuclear and mitochondrial DNA editing in human cells with zinc finger deaminases, Nat. Commun., 13, 366, 10.1038/s41467-022-27962-0
Cho, 2022, Targeted A-to-G base editing in human mitochondrial DNA with programmable deaminases, Cell, 185, 1764, 10.1016/j.cell.2022.03.039
Wei, 2022, Mitochondrial base editor DdCBE causes substantial DNA off-target editing in nuclear genome of embryos, Cell Discov., 8, 27, 10.1038/s41421-022-00391-5
Lei, 2022, Mitochondrial base editor induces substantial nuclear off-target mutations, Nature, 606, 804, 10.1038/s41586-022-04836-5
Hsu, 2014, Development and applications of CRISPR-Cas9 for genome engineering, Cell, 157, 1262, 10.1016/j.cell.2014.05.010
Ran, 2013, Genome engineering using the CRISPR-Cas9 system, Nat. Protoc., 8, 2281, 10.1038/nprot.2013.143
Gaj, 2013, ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering, Trends Biotechnol., 31, 397, 10.1016/j.tibtech.2013.04.004
Gammage, 2018, Mitochondrial genome engineering: the revolution may not be CRISPR-Ized, Trends Genet., 34, 101, 10.1016/j.tig.2017.11.001
Loutre, 2018, Can mitochondrial DNA be CRISPRized: Pro and Contra, IUBMB Life, 70, 1233, 10.1002/iub.1919
Jo, 2015, Efficient mitochondrial genome editing by CRISPR/Cas9, BioMed Res. Int., 2015, 305716, 10.1155/2015/305716
Bian, 2019, Knock-in strategy for editing human and zebrafish mitochondrial DNA using mito-CRISPR/Cas9 system, ACS Synth. Biol., 8, 621, 10.1021/acssynbio.8b00411
Antón, 2020, Mitochondrial import, health and mtDNA copy number variability seen when using type II and type V CRISPR effectors, J. Cell Sci., 133, jcs248468, 10.1242/jcs.248468
Wang, 2021, CRISPR/Cas9-mediated mutagenesis at microhomologous regions of human mitochondrial genome, Sci. China Life Sci., 64, 1463, 10.1007/s11427-020-1819-8
Hussain, 2021, Adapting CRISPR/Cas9 system for targeting mitochondrial genome, Front. Genet., 12, 627050, 10.3389/fgene.2021.627050
Hofreiter, 2001, DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA, Nucleic Acids Res., 29, 4793, 10.1093/nar/29.23.4793
Liu, 2002, Signal and noise in bridging PCR, BMC Biotechnol., 2, 13, 10.1186/1472-6750-2-13
Gilbert, 2003, Characterization of genetic miscoding lesions caused by postmortem damage, Am. J. Hum. Genet., 72, 48, 10.1086/345379
Sylvestre, 2003, The role of the 3' untranslated region in mRNA sorting to the vicinity of mitochondria is conserved from yeast to human cells, Mol. Biol. Cell, 14, 3848, 10.1091/mbc.e03-02-0074
Ginsberg, 2003, PKA-dependent binding of mRNA to the mitochondrial AKAP121 protein, J. Mol. Biol., 327, 885, 10.1016/S0022-2836(03)00173-6
Gao, 2017, Mutation of nucleotides around the +1 position of type 3 polymerase III promoters: the effect on transcriptional activity and start site usage, Transcription, 8, 275, 10.1080/21541264.2017.1322170
Zhang, 2017, Perfectly matched 20-nucleotide guide RNA sequences enable robust genome editing using high-fidelity SpCas9 nucleases, Genome Biol., 18, 191, 10.1186/s13059-017-1325-9
He, 2015, PRX1 knockdown potentiates vitamin K3 toxicity in cancer cells: a potential new therapeutic perspective for an old drug, J. Exp. Clin. Cancer Res., 34, 152, 10.1186/s13046-015-0270-2
Feng, 2013, Decreased mitochondrial DNA copy number in the hippocampus and peripheral blood during opiate addiction is mediated by autophagy and can be salvaged by melatonin, Autophagy, 9, 1395, 10.4161/auto.25468
Kajander, 2001, Prominent mitochondrial DNA recombination intermediates in human heart muscle, EMBO Rep., 2, 1007, 10.1093/embo-reports/kve233
D'Aurelio, 2004, Heterologous mitochondrial DNA recombination in human cells, Hum. Mol. Genet., 13, 3171, 10.1093/hmg/ddh326
Tadi, 2016, Microhomology-mediated end joining is the principal mediator of double-strand break repair during mitochondrial DNA lesions, Mol. Biol. Cell, 27, 223, 10.1091/mbc.e15-05-0260
Dahal, 2018, Homologous recombination-mediated repair of DNA double-strand breaks operates in mammalian mitochondria, Cell. Mol. Life Sci., 75, 1641, 10.1007/s00018-017-2702-y
Zhang, 2022, Homology-based repair induced by CRISPR-Cas nucleases in mammalian embryo genome editing, Protein Cell, 13, 316, 10.1007/s13238-021-00838-7
Qi, 2013, Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression, Cell, 152, 1173, 10.1016/j.cell.2013.02.022
Shen, 2014, Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects, Nat. Methods, 11, 399, 10.1038/nmeth.2857
Parr, 2006, The pseudo-mitochondrial genome influences mistakes in heteroplasmy interpretation, BMC Genom., 7, 185, 10.1186/1471-2164-7-185
Andrews, 1999, Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA, Nat. Genet., 23, 147, 10.1038/13779
Tsuji, 2012, Mammalian NUMT insertion is non-random, Nucleic Acids Res., 40, 9073, 10.1093/nar/gks424
Ardui, 2018, Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics, Nucleic Acids Res., 46, 2159, 10.1093/nar/gky066
Sage, 2010, Discovery of a novel function for human Rad51: maintenance of the mitochondrial genome, J. Biol. Chem., 285, 18984, 10.1074/jbc.M109.099846
Mishra, 2018, RAD51C/XRCC3 facilitates mitochondrial DNA replication and maintains integrity of the mitochondrial genome, Mol. Cell Biol., 38, e00489-17, 10.1128/MCB.00489-17
Song, 2016, RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency, Nat. Commun., 7, 10548, 10.1038/ncomms10548
Pinder, 2015, Nuclear domain 'knock-in' screen for the evaluation and identification of small molecule enhancers of CRISPR-based genome editing, Nucleic Acids Res., 43, 9379, 10.1093/nar/gkv993
Jayathilaka, 2008, A chemical compound that stimulates the human homologous recombination protein RAD51, Proc. Natl. Acad. Sci. USA, 105, 15848, 10.1073/pnas.0808046105
Budke, 2012, RI-1: a chemical inhibitor of RAD51 that disrupts homologous recombination in human cells, Nucleic Acids Res., 40, 7347, 10.1093/nar/gks353
Yao, 2008, Pseudomitochondrial genome haunts disease studies, J. Med. Genet., 45, 769, 10.1136/jmg.2008.059782
Musumeci, 2000, Intragenic inversion of mtDNA: a new type of pathogenic mutation in a patient with mitochondrial myopathy, Am. J. Hum. Genet., 66, 1900, 10.1086/302927
Blakely, 2006, Sporadic intragenic inversion of the mitochondrial DNA MTND1 gene causing fatal infantile lactic acidosis, Pediatr. Res., 59, 440, 10.1203/01.pdr.0000198771.78290.c4
King, 1988, Injection of mitochondria into human cells leads to a rapid replacement of the endogenous mitochondrial DNA, Cell, 52, 811, 10.1016/0092-8674(88)90423-0
Hagström, 2014, No recombination of mtDNA after heteroplasmy for 50 generations in the mouse maternal germline, Nucleic Acids Res., 42, 1111, 10.1093/nar/gkt969
Koulintchenko, 2006, Natural competence of mammalian mitochondria allows the molecular investigation of mitochondrial gene expression, Hum. Mol. Genet., 15, 143, 10.1093/hmg/ddi435
Tarasenko, 2021, Plant mitochondria import DNA via alternative membrane complexes involving various VDAC isoforms, Mitochondrion, 60, 43, 10.1016/j.mito.2021.07.006
Liu, 2020, Identification of mecciRNAs and their roles in the mitochondrial entry of proteins, Sci China Life Sci., 63, 1429, 10.1007/s11427-020-1631-9
Boesch, 2010, Membrane association of mitochondrial DNA facilitates base excision repair in mammalian mitochondria, Nucleic Acids Res., 38, 1478, 10.1093/nar/gkp1143
Wang, 2010, PNPASE regulates RNA import into mitochondria, Cell, 142, 456, 10.1016/j.cell.2010.06.035
Chen, 2022, Synergistic engineering of CRISPR-Cas nucleases enables robust mammalian genome editing, Innovation, 3, 100264
