A metabolic CRISPR-Cas9 screen in Chinese hamster ovary cells identifies glutamine-sensitive genes

Metabolic Engineering - Tập 66 - Trang 114-122 - 2021
Karen Julie la Cour Karottki1, Hooman Hefzi2,3,4, Songyuan Li1, Lasse Ebdrup Pedersen1, Philipp N. Spahn2,3, Chintan Joshi2,3, David Ruckerbauer5,6, Juan A.Hernandez Bort5, Alex Thomas2, Jae Seong Lee7, Nicole Borth5,6, Gyun Min Lee8, Helene Faustrup Kildegaard1, Nathan E. Lewis2,3,4,9
1The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark
2The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, USA
3Department of Pediatrics, University of California, San Diego, USA
4Department of Bioengineering, University of California, San Diego, USA
5Austrian Centre of Industrial Biotechnology, Vienna, Austria
6University of Natural Resources and Life Sciences Vienna, Austria
7Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
8Department of Biological Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
9National Biologics Facility, Technical University of Denmark, Denmark

Tài liệu tham khảo

Ahn, 2013, Parallel labeling experiments with [1,2-(13)C]glucose and [U-(13)C]glutamine provide new insights into CHO cell metabolism, Metab. Eng., 15, 34, 10.1016/j.ymben.2012.10.001 Altamirano, 2000, Improvement of CHO cell culture medium formulation: simultaneous substitution of glucose and glutamine, Biotechnol. Prog., 16, 69, 10.1021/bp990124j Bailey, 2020, ABHD11 maintains 2-oxoglutarate metabolism by preserving functional lipoylation of the 2-oxoglutarate dehydrogenase complex, Nat. Commun., 11, 4046, 10.1038/s41467-020-17862-6 Bassett, 2015, A genome-wide CRISPR library for high-throughput genetic screening in Drosophila cells, J. Genet. Genomics, 42, 301, 10.1016/j.jgg.2015.03.011 Bort, 2010, CHO-K1 host cells adapted to growth in glutamine-free medium by FACS-assisted evolution, Biotechnol. J., 5 1090 Borys, 1994, Ammonia affects the glycosylation patterns of recombinant mouse placental lactogen-I by Chinese hamster ovary cells in a pH-dependent manner, Biotechnol. Bioeng., 43, 505, 10.1002/bit.260430611 Brinkrolf, 2013, Chinese hamster genome sequenced from sorted chromosomes, Nat. Biotechnol., 31, 694, 10.1038/nbt.2645 Cullen, 2005, Genome-wide screening for gene function using RNAi in mammalian cells, Immunol. Cell Biol., 83, 217, 10.1111/j.1440-1711.2005.01332.x Doench, 2017, Am I ready for CRISPR? A user's guide to genetic screens, Nat. Rev. Genet., 19, 67, 10.1038/nrg.2017.97 Fan, 2012, Improving the efficiency of CHO cell line generation using glutamine synthetase gene knockout cells, Biotechnol. Bioeng., 109, 1007, 10.1002/bit.24365 Franz, 2018, GeneMANIA update 2018, Nucleic Acids Res., 46, 10.1093/nar/gky311 Gilbert, 2014, Genome-scale CRISPR-mediated control of gene repression and activation, Cell, 159, 647, 10.1016/j.cell.2014.09.029 Grav, 2015, One-step generation of triple knockout CHO cell lines using CRISPR/Cas9 and fluorescent enrichment, Biotechnol. J., 10, 1446, 10.1002/biot.201500027 Gutierrez, 2015, Optimizing eukaryotic cell hosts for protein production through systems biotechnology and genome-scale modeling, Biotechnol. J., 10, 939, 10.1002/biot.201400647 Hansen, 1994, Influence of ammonium on growth, metabolism, and productivity of a continuous suspension Chinese hamster ovary cell culture, Biotechnol. Prog., 10, 121, 10.1021/bp00025a014 Hart, 2014, Measuring error rates in genomic perturbation screens: gold standards for human functional genomics, Mol. Syst. Biol., 10, 733, 10.15252/msb.20145216 Hassell, 1991, Growth inhibition in animal cell culture. The effect of lactate and ammonia, Appl. Biochem. Biotechnol., 30, 29, 10.1007/BF02922022 Heaton, 2017, A CRISPR activation screen identifies a pan-avian influenza virus inhibitory host factor, Cell Rep., 20, 1503, 10.1016/j.celrep.2017.07.060 Hefzi, 2016, A consensus genome-scale reconstruction of Chinese hamster ovary cell metabolism, Cell Syst, 3, 434, 10.1016/j.cels.2016.10.020 Hernández Bort, 2012, Dynamic mRNA and miRNA profiling of CHO-K1 suspension cell cultures, Biotechnol. J., 7, 500, 10.1002/biot.201100143 Jayapal, 2007, Recombinant protein therapeutics from CHO cells — 20 Years and counting, Chem. Eng. Prog., 103 40 Joung, 2017, Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening, Nat. Protoc., 12, 828, 10.1038/nprot.2017.016 Joung, 2017, Genome-scale activation screen identifies a lncRNA locus regulating a gene neighbourhood, Nature, 548, 343, 10.1038/nature23451 Kaelin, 2012, Molecular biology. Use and abuse of RNAi to study mammalian gene function, Science, 337, 421, 10.1126/science.1225787 Klanert, 2019, A cross-species whole genome siRNA screen in suspension-cultured Chinese hamster ovary cells identifies novel engineering targets, Sci. Rep., 9, 8689, 10.1038/s41598-019-45159-2 Koike-Yusa, 2014, Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library, Nat. Biotechnol., 32, 267, 10.1038/nbt.2800 Krämer, 2014, Causal analysis approaches in ingenuity pathway analysis, Bioinformatics, 30, 523, 10.1093/bioinformatics/btt703 Lee, 2015, Site-specific integration in CHO cells mediated by CRISPR/Cas9 and homology-directed DNA repair pathway, Sci. Rep., 5, 8572, 10.1038/srep08572 Lewis, 2013, Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome, Nat. Biotechnol., 31, 759, 10.1038/nbt.2624 Li, 2014, MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens, Genome Biol., 15, 554, 10.1186/s13059-014-0554-4 Lin, 2020, Improving antibody production in stably transfected CHO cells by CRISPR-cas9-mediated inactivation of genes identified in a large-scale screen with Chinese hamster-specific siRNAs, Biotechnol. J. Liu, 2017, CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells, Science, 355, 10.1126/science.aah7111 Magoč, 2011, FLASH: fast length adjustment of short reads to improve genome assemblies, Bioinformatics, 10.1093/bioinformatics/btr507 Newsholme, 2003, Glutamine and glutamate as vital metabolites, Braz. J. Med. Biol. Res., 36, 153, 10.1590/S0100-879X2003000200002 Ozturk, 1992, Effects of ammonia and lactate on hybridoma growth, metabolism, and antibody production, Biotechnol. Bioeng., 39, 418, 10.1002/bit.260390408 Richelle, 2017, Improvements in protein production in mammalian cells from targeted metabolic engineering, Curr. Opin. Struct. Biol., 6, 1 Ronda, 2014, Accelerating genome editing in CHO cells using CRISPR Cas9 and CRISPy, a web-based target finding tool, Biotechnol. Bioeng., 111, 1604, 10.1002/bit.25233 Rosenbluh, 2017, Complementary information derived from CRISPR Cas9 mediated gene deletion and suppression, Nat. Commun., 8, 15403, 10.1038/ncomms15403 Sakuma, 2015, Homologous recombination-independent large gene cassette knock-in in CHO cells using TALEN and MMEJ-directed donor plasmids, Int. J. Mol. Sci., 16, 23849, 10.3390/ijms161023849 Santiago, 2008, Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases, Proc. Natl. Acad. Sci. U.S.A., 105, 5809, 10.1073/pnas.0800940105 Schuster, 2019, RNAi/CRISPR screens: from a pool to a valid hit, Trends Biotechnol., 37, 38, 10.1016/j.tibtech.2018.08.002 Shalem, 2014, Genome-scale CRISPR-Cas9 knockout screening in human cells, Science, 343, 84, 10.1126/science.1247005 Smith, 2017, Evaluation of RNAi and CRISPR technologies by large-scale gene expression profiling in the Connectivity Map, PLoS Biol., 15, 10.1371/journal.pbio.2003213 Spahn, 2017, PinAPL-Py: a comprehensive web-application for the analysis of CRISPR/Cas9 screens, Sci. Rep., 7, 15854, 10.1038/s41598-017-16193-9 Taschwer, 2012, Growth, productivity and protein glycosylation in a CHO EpoFc producer cell line adapted to glutamine-free growth, J. Biotechnol., 157, 295, 10.1016/j.jbiotec.2011.11.014 Thorens, 1986, Chloroquine and ammonium chloride prevent terminal glycosylation of immunoglobulins in plasma cells without affecting secretion, Nature, 321, 618, 10.1038/321618a0 Walsh, 2018, Biopharmaceutical benchmarks 2018, Nat. Biotechnol., 36, 1136, 10.1038/nbt.4305 Wang, 2014, Genetic screens in human cells using the CRISPR-cas9 system, Science, 343, 80, 10.1126/science.1246981 Xu, 2011, The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line, Nat. Biotechnol., 29, 735, 10.1038/nbt.1932 Yang, 2000, Effects of ammonia on CHO cell growth, erythropoietin production, and glycosylation, Biotechnol. Bioeng., 68, 370, 10.1002/(SICI)1097-0290(20000520)68:4<370::AID-BIT2>3.0.CO;2-K Yang, 2000, Effect of ammonia on the glycosylation of human recombinant erythropoietin in culture, Biotechnol. Prog., 16, 751, 10.1021/bp000090b Yao, 2017, Animal-cell culture media: history, characteristics, and current issues, Reprod. Med. Biol., 16, 99, 10.1002/rmb2.12024 Zhou, 2014, High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells, Nature, 509, 487, 10.1038/nature13166 Zielinski, 2017, Systems biology analysis of drivers underlying hallmarks of cancer cell metabolism, Sci. Rep., 7, 41241, 10.1038/srep41241