A metabolic CRISPR-Cas9 screen in Chinese hamster ovary cells identifies glutamine-sensitive genes
Tài liệu tham khảo
Ahn, 2013, Parallel labeling experiments with [1,2-(13)C]glucose and [U-(13)C]glutamine provide new insights into CHO cell metabolism, Metab. Eng., 15, 34, 10.1016/j.ymben.2012.10.001
Altamirano, 2000, Improvement of CHO cell culture medium formulation: simultaneous substitution of glucose and glutamine, Biotechnol. Prog., 16, 69, 10.1021/bp990124j
Bailey, 2020, ABHD11 maintains 2-oxoglutarate metabolism by preserving functional lipoylation of the 2-oxoglutarate dehydrogenase complex, Nat. Commun., 11, 4046, 10.1038/s41467-020-17862-6
Bassett, 2015, A genome-wide CRISPR library for high-throughput genetic screening in Drosophila cells, J. Genet. Genomics, 42, 301, 10.1016/j.jgg.2015.03.011
Bort, 2010, CHO-K1 host cells adapted to growth in glutamine-free medium by FACS-assisted evolution, Biotechnol. J., 5 1090
Borys, 1994, Ammonia affects the glycosylation patterns of recombinant mouse placental lactogen-I by Chinese hamster ovary cells in a pH-dependent manner, Biotechnol. Bioeng., 43, 505, 10.1002/bit.260430611
Brinkrolf, 2013, Chinese hamster genome sequenced from sorted chromosomes, Nat. Biotechnol., 31, 694, 10.1038/nbt.2645
Cullen, 2005, Genome-wide screening for gene function using RNAi in mammalian cells, Immunol. Cell Biol., 83, 217, 10.1111/j.1440-1711.2005.01332.x
Doench, 2017, Am I ready for CRISPR? A user's guide to genetic screens, Nat. Rev. Genet., 19, 67, 10.1038/nrg.2017.97
Fan, 2012, Improving the efficiency of CHO cell line generation using glutamine synthetase gene knockout cells, Biotechnol. Bioeng., 109, 1007, 10.1002/bit.24365
Franz, 2018, GeneMANIA update 2018, Nucleic Acids Res., 46, 10.1093/nar/gky311
Gilbert, 2014, Genome-scale CRISPR-mediated control of gene repression and activation, Cell, 159, 647, 10.1016/j.cell.2014.09.029
Grav, 2015, One-step generation of triple knockout CHO cell lines using CRISPR/Cas9 and fluorescent enrichment, Biotechnol. J., 10, 1446, 10.1002/biot.201500027
Gutierrez, 2015, Optimizing eukaryotic cell hosts for protein production through systems biotechnology and genome-scale modeling, Biotechnol. J., 10, 939, 10.1002/biot.201400647
Hansen, 1994, Influence of ammonium on growth, metabolism, and productivity of a continuous suspension Chinese hamster ovary cell culture, Biotechnol. Prog., 10, 121, 10.1021/bp00025a014
Hart, 2014, Measuring error rates in genomic perturbation screens: gold standards for human functional genomics, Mol. Syst. Biol., 10, 733, 10.15252/msb.20145216
Hassell, 1991, Growth inhibition in animal cell culture. The effect of lactate and ammonia, Appl. Biochem. Biotechnol., 30, 29, 10.1007/BF02922022
Heaton, 2017, A CRISPR activation screen identifies a pan-avian influenza virus inhibitory host factor, Cell Rep., 20, 1503, 10.1016/j.celrep.2017.07.060
Hefzi, 2016, A consensus genome-scale reconstruction of Chinese hamster ovary cell metabolism, Cell Syst, 3, 434, 10.1016/j.cels.2016.10.020
Hernández Bort, 2012, Dynamic mRNA and miRNA profiling of CHO-K1 suspension cell cultures, Biotechnol. J., 7, 500, 10.1002/biot.201100143
Jayapal, 2007, Recombinant protein therapeutics from CHO cells — 20 Years and counting, Chem. Eng. Prog., 103 40
Joung, 2017, Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening, Nat. Protoc., 12, 828, 10.1038/nprot.2017.016
Joung, 2017, Genome-scale activation screen identifies a lncRNA locus regulating a gene neighbourhood, Nature, 548, 343, 10.1038/nature23451
Kaelin, 2012, Molecular biology. Use and abuse of RNAi to study mammalian gene function, Science, 337, 421, 10.1126/science.1225787
Klanert, 2019, A cross-species whole genome siRNA screen in suspension-cultured Chinese hamster ovary cells identifies novel engineering targets, Sci. Rep., 9, 8689, 10.1038/s41598-019-45159-2
Koike-Yusa, 2014, Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library, Nat. Biotechnol., 32, 267, 10.1038/nbt.2800
Krämer, 2014, Causal analysis approaches in ingenuity pathway analysis, Bioinformatics, 30, 523, 10.1093/bioinformatics/btt703
Lee, 2015, Site-specific integration in CHO cells mediated by CRISPR/Cas9 and homology-directed DNA repair pathway, Sci. Rep., 5, 8572, 10.1038/srep08572
Lewis, 2013, Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome, Nat. Biotechnol., 31, 759, 10.1038/nbt.2624
Li, 2014, MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens, Genome Biol., 15, 554, 10.1186/s13059-014-0554-4
Lin, 2020, Improving antibody production in stably transfected CHO cells by CRISPR-cas9-mediated inactivation of genes identified in a large-scale screen with Chinese hamster-specific siRNAs, Biotechnol. J.
Liu, 2017, CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells, Science, 355, 10.1126/science.aah7111
Magoč, 2011, FLASH: fast length adjustment of short reads to improve genome assemblies, Bioinformatics, 10.1093/bioinformatics/btr507
Newsholme, 2003, Glutamine and glutamate as vital metabolites, Braz. J. Med. Biol. Res., 36, 153, 10.1590/S0100-879X2003000200002
Ozturk, 1992, Effects of ammonia and lactate on hybridoma growth, metabolism, and antibody production, Biotechnol. Bioeng., 39, 418, 10.1002/bit.260390408
Richelle, 2017, Improvements in protein production in mammalian cells from targeted metabolic engineering, Curr. Opin. Struct. Biol., 6, 1
Ronda, 2014, Accelerating genome editing in CHO cells using CRISPR Cas9 and CRISPy, a web-based target finding tool, Biotechnol. Bioeng., 111, 1604, 10.1002/bit.25233
Rosenbluh, 2017, Complementary information derived from CRISPR Cas9 mediated gene deletion and suppression, Nat. Commun., 8, 15403, 10.1038/ncomms15403
Sakuma, 2015, Homologous recombination-independent large gene cassette knock-in in CHO cells using TALEN and MMEJ-directed donor plasmids, Int. J. Mol. Sci., 16, 23849, 10.3390/ijms161023849
Santiago, 2008, Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases, Proc. Natl. Acad. Sci. U.S.A., 105, 5809, 10.1073/pnas.0800940105
Schuster, 2019, RNAi/CRISPR screens: from a pool to a valid hit, Trends Biotechnol., 37, 38, 10.1016/j.tibtech.2018.08.002
Shalem, 2014, Genome-scale CRISPR-Cas9 knockout screening in human cells, Science, 343, 84, 10.1126/science.1247005
Smith, 2017, Evaluation of RNAi and CRISPR technologies by large-scale gene expression profiling in the Connectivity Map, PLoS Biol., 15, 10.1371/journal.pbio.2003213
Spahn, 2017, PinAPL-Py: a comprehensive web-application for the analysis of CRISPR/Cas9 screens, Sci. Rep., 7, 15854, 10.1038/s41598-017-16193-9
Taschwer, 2012, Growth, productivity and protein glycosylation in a CHO EpoFc producer cell line adapted to glutamine-free growth, J. Biotechnol., 157, 295, 10.1016/j.jbiotec.2011.11.014
Thorens, 1986, Chloroquine and ammonium chloride prevent terminal glycosylation of immunoglobulins in plasma cells without affecting secretion, Nature, 321, 618, 10.1038/321618a0
Walsh, 2018, Biopharmaceutical benchmarks 2018, Nat. Biotechnol., 36, 1136, 10.1038/nbt.4305
Wang, 2014, Genetic screens in human cells using the CRISPR-cas9 system, Science, 343, 80, 10.1126/science.1246981
Xu, 2011, The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line, Nat. Biotechnol., 29, 735, 10.1038/nbt.1932
Yang, 2000, Effects of ammonia on CHO cell growth, erythropoietin production, and glycosylation, Biotechnol. Bioeng., 68, 370, 10.1002/(SICI)1097-0290(20000520)68:4<370::AID-BIT2>3.0.CO;2-K
Yang, 2000, Effect of ammonia on the glycosylation of human recombinant erythropoietin in culture, Biotechnol. Prog., 16, 751, 10.1021/bp000090b
Yao, 2017, Animal-cell culture media: history, characteristics, and current issues, Reprod. Med. Biol., 16, 99, 10.1002/rmb2.12024
Zhou, 2014, High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells, Nature, 509, 487, 10.1038/nature13166
Zielinski, 2017, Systems biology analysis of drivers underlying hallmarks of cancer cell metabolism, Sci. Rep., 7, 41241, 10.1038/srep41241
