Experimental investigation of pool boiling heat transfer and critical heat flux of nanostructured surfaces
Tài liệu tham khảo
Bang, 2005, Boiling heat transfer performance and phenomena of Al2O3–water nano-fluids from a plain surface in a pool, Int. J. Heat Mass Transfer, 48, 2407, 10.1016/j.ijheatmasstransfer.2004.12.047
Wei, 2003, Effect of fin geometry on boiling heat transfer from silicon ships with micro-pin-fins immersed in FC-72, Int. J. Heat Mass Transfer, 46, 4059, 10.1016/S0017-9310(03)00226-6
Ghiu, 2005, Visualization study of pool boiling from thin confined enhanced structures, Int. J. Heat Mass Transfer, 48, 4287, 10.1016/j.ijheatmasstransfer.2005.05.024
Jo, 2011, A study of nucleate boiling heat transfer on hydrophilic, hydrophobic and heterogeneous wetting surfaces, Int. J. Heat Mass Transfer, 54, 5643, 10.1016/j.ijheatmasstransfer.2011.06.001
Lu, 2011, Critical heat flux of pool boiling on Si nanowire array-coated surfaces, Int. J. Heat Mass Transfer, 54, 5359, 10.1016/j.ijheatmasstransfer.2011.08.007
Fagerholm, 1987, Boiling heat transfer performance of plain and porous tubes in falling film flow of refrigerant R114, Warme-unde Stoffubertrag., 21, 343, 10.1007/BF01376289
Frieser, 1980, Surface treatments of silicon to enhance thermal nucleation, J. Appl. Electrochem., 10, 449, 10.1007/BF00614078
Cieslinski, 2002, Nucleate boiling on porous metallic coatings, Exp. Therm. Fluid Sci., 25, 557, 10.1016/S0894-1777(01)00105-4
White, 2011, Boiling surface enhancement by electrophoretic deposition of particles from a nanofluid, Int. J. Heat Mass Transfer, 54, 4370, 10.1016/j.ijheatmasstransfer.2011.05.008
Guan, 2011, A new mechanistic model for pool boiling CHF on horizontal surfaces, Int. J. Heat Mass Transfer, 54, 3960, 10.1016/j.ijheatmasstransfer.2011.04.029
Phan, 2009, Surface wettability control by nanocoating: the effects on pool boiling heat transfer and nucleation mechanism, Int. J. Heat Mass Transfer, 52, 5459, 10.1016/j.ijheatmasstransfer.2009.06.032
Hendricks, 2010, Enhancement of pool-boiling heat transfer using nanostructured surfaces on aluminum and copper, Int. J. Heat Mass Transfer, 53, 3357, 10.1016/j.ijheatmasstransfer.2010.02.025
Lee, 2010, Pool boiling heat transfer with nano-porous surface, Int. J. Heat Mass Transfer, 53, 4274, 10.1016/j.ijheatmasstransfer.2010.05.054
Forrest, 2010, Augmentation of nucleate boiling heat transfer and critical heat flux using nanoparticle thin-film coatings, Int. J. Heat Mass Transfer, 53, 58, 10.1016/j.ijheatmasstransfer.2009.10.008
Vemuri, 2005, Pool boiling of saturated FC-72 on nano-porous surface, Int. Commun. Heat Mass Transfer, 32, 27, 10.1016/j.icheatmasstransfer.2004.03.020
Stutz, 2011, Influence of nanoparticle surface coating on pool boiling, Exp. Therm. Fluid Sci., 35, 1239, 10.1016/j.expthermflusci.2011.04.011
Sonntag, 2002
Abbassi, 1989, Effect of confined geometry on pool boiling at high temperature, Exp. Therm. Fluid Sci., 2, 127, 10.1016/0894-1777(89)90026-5
N. Zuber, Hydrodynamic aspect of boiling heat transfer, Ph.D. Thesis, University of California, Los Angeles, CA, 1959.
Kim, 2007, Surface wettability change during pool boiling of nanofluid and its effect on critical heat flux, Int. J. Heat Mass Transfer, 50, 4105, 10.1016/j.ijheatmasstransfer.2007.02.002
Theofanous, 2006, High heat flux boiling and burnout of microphysical phenomena: mounting evidence and opportunities, Multiphase Sci. Technol., 18, 1
Kandlikar, 2001, A theoretical model to predict pool boiling CHF incorporating effect of contact angle and orientation, J. Heat Transfer, 123, 1071, 10.1115/1.1409265
Kim, 2007, Effect of nanoparticle deposition on capillary pumping that influences the critical heat flux in nanofluids, Appl. Phys. Lett., 91, 014104, 10.1063/1.2754644
Kim, 2010, Effects of nano-fluid and surfaces with nano structure on the increase of CHF, Exp. Therm. Fluid Sci., 34, 487, 10.1016/j.expthermflusci.2009.05.006
Mitrovic, 2006, How to create an efficient surface for nucleate boiling?, Int J. Therm. Sci., 45, 1, 10.1016/j.ijthermalsci.2005.05.003
Kline, 1953, Describing uncertainties in single-sample experiments, Mech. Eng., 75, 3