Degradation of natural organic matter: A thermodynamic analysis

Geochimica et Cosmochimica Acta - Tập 75 - Trang 2030-2042 - 2011
Douglas E. LaRowe, Philippe Van Cappellen

Tài liệu tham khảo

Ågren, 1998 Amend, 1997, Calculation of the standard molal thermodynamic properties of aqueous biomolecules at elevated temperatures and pressures. 1. L-α-amino acids, J. Chem. Soc. Faraday Trans., 93, 1927, 10.1039/a608126f Amend, 1997, Group additivity equations of state for calculating the standard molal thermodynamic properties of aqueous organic species at elevated temperatures and pressures, Geochim. Cosmochim. Acta, 61, 11, 10.1016/S0016-7037(96)00306-7 Amend, 1997, Solubilities of the common L-α-amino acids as a function of temperature and solution pH, Pure Appl. Chem., 69, 935, 10.1351/pac199769050935 Amend, 2000, Calculation of the standard molal thermodynamic properties of aqueous biomolecules at elevated temperatures and pressures. II. Unfolded proteins, Biophys. Chem., 84, 105, 10.1016/S0301-4622(00)00116-2 Amend, 2001, Carbohydrates in thermophile metabolism: calculation of the standard molal thermodynamic properties of aqueous pentoses and hexoses at elevated temperatures and pressures, Geochim. Cosmochim. Acta, 65, 3901, 10.1016/S0016-7037(01)00707-4 Amend, 2001, Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria, FEMS Microbiol. Rev., 25, 175, 10.1111/j.1574-6976.2001.tb00576.x Amend, 2005, Expanding frontiers in deep subsurface microbiology, Palaeogeog. Palaeoclim. Palaeoecol., 219, 131, 10.1016/j.palaeo.2004.10.018 Anderson, 1995, On the hydrogen and oxygen content of marine phytoplankton, Deep-Sea Res. I Oceanog. Res. Pap., 42, 1675, 10.1016/0967-0637(95)00072-E Arndt, 2006, Cretaceous black shales as active bioreactors: a biogeochemical model for the deep biosphere encountered during ODP Leg 207 (Demerara Rise), Geochim. Cosmochim. Acta, 70, 408, 10.1016/j.gca.2005.09.010 Arndt, 2009, Evolution of organic matter degradation in Cretaceous black shales inferred from authigenic barite: a reaction-transport model, Geochim. Cosmochim. Acta, 73, 2000, 10.1016/j.gca.2009.01.018 Berner, 1989, Biogeochemical cycles of carbon and sulfur and their effect on atmospheric oxygen over Phanerozoic time, Palaeogeog. Palaeoclim. Palaeoecol., 75, 97, 10.1016/0031-0182(89)90186-7 Berner, 1980 Berner, 1989, A new model for atmospheric oxygen over Phanerozoic time, Am. J. Sci., 289, 333, 10.2475/ajs.289.4.333 Bonneville, 2009, Solubility and dissimilatory reduction kinetics of iron(III) oxyhydroxides: a linear free energy approach, Geochim. Cosmochim. Acta, 73, 5273, 10.1016/j.gca.2009.06.006 Boudreau, 1991, On a reactive continuum representation of organic matter diagenesis, Am. J. Sci., 291, 507, 10.2475/ajs.291.5.507 Burdige, 2007 Canavan, 2006, Organic matter mineralization in sediment of a coastal freshwater lake and response to salinization, Geochim. Cosmochim. Acta, 70, 1, 10.1016/j.gca.2006.03.012 Canfield, 1993, Organic matter oxidation in marine sediments, 333 Canuel, 1996, Reactivity of recently deposited organic matter: degradation of lipid compounds near the sediment–water interface, Geochim. Cosmochim. Acta, 60, 1793, 10.1016/0016-7037(96)00045-2 Čenský, 2007, Standard partial molal properties of aqueous alkylphenols and alkylanilines over a wide range of temperatures and pressures, Geochim. Cosmochim. Acta, 71, 580, 10.1016/j.gca.2006.10.022 Claypool, 1974, The origin and distribution of methane in marine sediments, 99 Dale, 2006, Bioenergetic controls on anaerobic oxidation of methane (AOM) in coastal marine sediments: a theoretical analysis, Am. J. Sci., 306, 246, 10.2475/ajs.306.4.246 Dale, 2008, Methane efflux from marine sediments in passive and active margins: estimations from bioenergetic reaction-transport simulations, Earth Planet. Sci. Lett., 265, 329, 10.1016/j.epsl.2007.09.026 Dale, 1997, Standard partial molal properties of aqueous alkylphenols at high pressures and temperatures, Geochim. Cosmochim. Acta, 61, 4017, 10.1016/S0016-7037(97)00212-3 Dalla-Betta, 2009, Calculation of the aqueous thermodynamic properties of citric acid cycle intermediates and precursors and the estimation of high temperature and pressure equation of state parameters, Int. J. Mol. Sci., 10, 2809, 10.3390/ijms10062809 Dauwe, 1998, Amino acids and hexosamines as indicators or organic matter degradation state in North Sea sediments, Limnol. Oceanogr., 43, 782, 10.4319/lo.1998.43.5.0782 Dick, 2006, Group additivity calculation of the standard molal thermodynamic properties of aqueous amino acids, polypeptides, and unfolded proteins as a function of temperature, pressure, and ionization state, Biogeosciences, 3, 311, 10.5194/bg-3-311-2006 Froelich, 1979, Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis, Geochim. Cosmochim. Acta, 43, 1075, 10.1016/0016-7037(79)90095-4 Garrels, 1974, Cycling of carbon, sulfur and oxygen through geologic time, vol. 5, 303 Haas, 1999, Halocarbons in the environment: estimates of thermodynamic properties for aqueous chloroethylene species and their stabilities in natural settings, Geochim. Cosmochim. Acta, 63, 3429, 10.1016/S0016-7037(99)00276-8 Hartnett, 1998, Influence of oxygen exposure time on organic carbon preservation in continental margin sediments, Nature, 391, 572, 10.1038/35351 Hawrylak, 2006, Thermodynamics of aqueous methyldiethanolamine (MDEA) and methyldiethanolammonium chloride (MDEAH+Cl−) over a wide range of temperature and pressure: Apparent molar volumes, heat capacities, and isothermal compressibilities, J. Chem. Thermodyn., 38, 988, 10.1016/j.jct.2005.10.013 Hedges, 1997, Comparative organic geochemistries of soils and marine sediments, Org. Geochem., 27, 319, 10.1016/S0146-6380(97)00056-9 Helgeson, 1991, Organic/inorganic reactions in metamorphic processes, Can. Mineral., 29, 707 Helgeson, 1974, Theoretical prediction of thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: 1. Summary of thermodynamic–electrostatic properties of the solvent, Am. J. Sci., 274, 1089, 10.2475/ajs.274.10.1089 Helgeson, 1974, Theoretical prediction of thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: 2. Debye–Hückel parameters for activity coefficients and relative partial molal properties, Am. J. Sci., 274, 1199, 10.2475/ajs.274.10.1199 Helgeson, 1976, Theoretical prediction of thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: 3. Equation of state for aqueous species at infinite dilution, Am. J. Sci., 276, 97, 10.2475/ajs.276.2.97 Helgeson, 1981, Am. J. Sci., 281, 1249, 10.2475/ajs.281.10.1249 Helgeson, 1998, Calculation of the standard molal thermodynamic properties of crystalline, liquid, and gas organic molecules at high temperatures and pressures, Geochim. Cosmochim. Acta, 62, 985, 10.1016/S0016-7037(97)00219-6 Helgeson, 2009, A chemical and thermodynamic model of oil generation in hydrocarbon source rocks, Geochim. Cosmochim. Acta, 73, 594, 10.1016/j.gca.2008.03.004 Henrichs, 2005, Organic matter in coastal marine sediments, 129 Hunter, 1998, Kinetic modeling of microbially-driven redox chemistry of subsurface environments: coupling transport, microbial metabolism and geochemistry, J. Hydrol., 209, 53, 10.1016/S0022-1694(98)00157-7 Hyacinthe, 2006, Reactive iron(III) in sediments: chemical versus microbial extractions, Geochim. Cosmochim. Acta, 70, 4166, 10.1016/j.gca.2006.05.018 Jin, 2002, Kinetics of electron transfer through the respiratory chain, Biophys. J., 83, 1797, 10.1016/S0006-3495(02)73945-3 Jin, 2003, A new rate law describing microbial respiration, Appl. Environ. Microbiol., 69, 2340, 10.1128/AEM.69.4.2340-2348.2003 Jin, 2005, Predicting the rate of microbial respiration in geochemical environments, Geochim. Cosmochim. Acta, 69, 1133, 10.1016/j.gca.2004.08.010 Jin, 2009, Cellular energy conservation and the rate of microbial sulfate reduction, Geology, 37, 1027, 10.1130/G30185A.1 Johnson, 1992, SUPCRT92 – a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1bar to 5000bar and 0°C to 1000°C, Comput. Geosci., 18, 899, 10.1016/0098-3004(92)90029-Q Jourabchi, 2005, Quantitative interpretation of pH distributions in aquatic sediments: a reactive transport modeling approach, Am. J. Sci., 305, 919, 10.2475/ajs.305.9.919 LaRowe, 2008, A thermodynamic analysis of the anaerobic oxidation of methane in marine sediments, Geobiology, 6, 436, 10.1111/j.1472-4669.2008.00170.x LaRowe, 2006, Biomolecules in hydrothermal systems: calculation of the standard molal thermodynamic properties of nucleic-acid bases, nucleosides, and nucleotides at elevated temperatures and pressures, Geochim. Cosmochim. Acta, 70, 4680, 10.1016/j.gca.2006.04.010 LaRowe, 2007, Quantifying the energetics of metabolic reactions in diverse biogeochemical systems: electron flow and ATP synthesis, Geobiology, 5, 153, 10.1111/j.1472-4669.2007.00099.x LaRowe, 2006, The energetics of metabolism in hydrothermal systems: calculation of the standard molal thermodynamic properties of magnesium-complexed adenosine nucleotides and NAD and NADP at elevated temperature and pressures, Thermochim. Acta, 448, 82, 10.1016/j.tca.2006.06.008 Majzlan, 2003, Thermodynamics of Fe oxides: Part II. Enthalpies of formation and relative stability of goethite (α-FeOOH), lepidocrocite (γ-FeOOH), and maghemite (γ-Fe2O3), Am. Mineral., 88, 855, 10.2138/am-2003-5-614 Majzlan, 2003, Thermodynamics of Fe oxides: Part I. Entropy at standard temperature and pressure and heat capacity of goethite (α-FeOOH), lepidocrocite (γ-FeOOH), and maghemite (γ-Fe2O3), Am. Mineral., 88, 846, 10.2138/am-2003-5-613 Majzlan, 2004, Thermodynamics of iron oxides: Part III. Enthalpies of formation and stability of ferrihydrite (∼Fe(OH)3), schwertmannite (∼FeO(OH)3/4(SO4)1/8), and ε-Fe2O3, Geochim. Cosmochim. Acta, 68, 1049, 10.1016/S0016-7037(03)00371-5 Marschner, 2008, How relevant is recalcitrance for the stabilization of organic matter in soils?, J. Plant Nutr. Soil Sci., 171, 91, 10.1002/jpln.200700049 Middelburg, 1989, A simple rate model for organic matter decomposition in marine sediments, Geochem. Cosmochim. Acta, 53, 1577, 10.1016/0016-7037(89)90239-1 Moodley, 2005, Oxygenation and organic-matter preservation in marine sediments: direct experimental evidence from ancient organic carbon-rich deposits, Geology, 33, 889, 10.1130/G21731.1 Oades, 1989, An introduction to organic matter in mineral soils, 89 Petsch, 2000, A field study of the chemical weathering of ancient sedimentary organic matter, Org. Geochem., 31, 475, 10.1016/S0146-6380(00)00014-0 Plyasunova, 2004, Database of thermodynamic properties for aqueous organic compounds, Int. J. Thermophys., 25, 351, 10.1023/B:IJOT.0000028472.63853.2d Prapaipong, 1999, Metal–organic complexes in geochemical processes: temperature dependence of the standard thermodynamic properties of aqueous complexes between metal cations and dicarboxylate ligands, Geochim. Cosmochim. Acta, 63, 2547, 10.1016/S0016-7037(99)00146-5 Redfield, 1963, The influence of organisms on the composition of sea water, vol. 2, 26 Richard, 2001, Calculation of the standard molal thermodynamic properties as a function of temperature and pressure of some geochemically important organic sulfur compounds, Geochim. Cosmochim. Acta, 65, 3827, 10.1016/S0016-7037(01)00761-X Richard L. (2006) Development of ThermoChimie with respect to endogenic organic compounds. ANDRA (French National Radioactive Waste Management Agency) report D.RP0.G2R.07.0001.A. Richard, 1998, Calculation of the thermodynamic properties at elevated temperatures and pressures of saturated and aromatic high molecular weight solid and liquid hydrocarbons in kerogen, bitumen, petroleum, and other organic matter of biogeochemical interest, Geochim. Cosmochim. Acta, 62, 3591, 10.1016/S0016-7037(97)00345-1 Robie, 1985, Low-temperature molar heat capacities and entropies of MnO2 (pyrolusite), Mn3O4 (hausmanite) and Mn2O3 (bixbyite), J. Chem. Thermodyn., 17, 165, 10.1016/0021-9614(85)90069-2 Schnitzer, 1991, Soil organic-matter – the next 75 years, Soil Sci., 151, 41, 10.1097/00010694-199101000-00008 Schreiner, 2009, White-rot Basidiomycete-mediated decomposition of C60 Fullerol, Environ. Sci. Technol., 43, 3162, 10.1021/es801873q Schrenk, 2010, Microbial provinces in the subseafloor, Annu. Rev. Mar. Sci., 2, 279, 10.1146/annurev-marine-120308-081000 Schulte, 2010, Organic sulfides in hydrothermal solution: standard partial molal properties and role in organic geochemistry of hydrothermal environments, Aquat. Geochem., 16, 621, 10.1007/s10498-010-9102-3 Schulte, 2004, Thiols in hydrothermal solution: standard partial molal properties and their role in the organic geochemistry of hydrothermal environments, Geochim. Cosmochim. Acta, 68, 1087, 10.1016/j.gca.2003.06.001 Schulte, 1993, Aldehydes in hydrothermal solution – standard partial molal thermodynamic properties and relative stabilities at high temperatures and pressures, Geochim. Cosmochim. Acta, 57, 3835, 10.1016/0016-7037(93)90337-V Shock, 1995, Organic acids in hydrothermal solutions – standard molal thermodynamic properties of carboxylic acids and estimates of dissociation constants at high temperatures and pressures, Am. J. Sci., 295, 496, 10.2475/ajs.295.5.496 Shock, 1988, Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures – correlation algorithms for ionic species and equation of state predictions to 5kb and 1000°C, Geochim. Cosmochim. Acta, 52, 2009, 10.1016/0016-7037(88)90181-0 Shock, 1990, Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures – standard partial molal properties of organic species, Geochim. Cosmochim. Acta, 54, 915, 10.1016/0016-7037(90)90429-O Shock, 1989, Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures – standard partial molal properties of inorganic neutral species, Geochim. Cosmochim. Acta, 53, 2157, 10.1016/0016-7037(89)90341-4 Shock, 1993, Metal organic complexes in geochemical processes – calculation of standard partial molal thermodynamic properties of aqueous acetate complexes at high pressures and temperatures, Geochim. Cosmochim. Acta, 57, 4899, 10.1016/0016-7037(93)90128-J Shock, 1995, Metal organic complexes in geochemical processes – estimation of standard partial molal thermodynamic properties of aqueous complexes between metal cations and monovalent ligands at high pressures and temperatures, Geochim. Cosmochim. Acta, 59, 1497, 10.1016/0016-7037(95)00058-8 Shock, 1997, Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes, Geochim. Cosmochim. Acta, 61, 907, 10.1016/S0016-7037(96)00339-0 Smith, 2008, Impact of global warming on soil organic carbon, Adv. Agron., 97, 1, 10.1016/S0065-2113(07)00001-6 Stumm, 1996 Tanger, 1988, Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures – revised equations of state for the standard partial molal properties of ions and electrolytes, Am. J. Sci., 288, 19, 10.2475/ajs.288.1.19 Thullner, 2009, Global-scale quantification of mineralization pathways in marine sediments: a reaction-transport modeling approach, Geochem. Geophys. Geosys., 10, 1, 10.1029/2009GC002484 Thullner, 2007, Modeling microbially induced carbon degradation in redox-stratified subsurface environments: concepts and open questions, Geomicrobiol. J., 24, 139, 10.1080/01490450701459275 Tissot, 1984 Tromp, 1995, A global model for the early diagenesis of organic carbon and organic phosphorous in marine sediments, Geochim. Cosmochim. Acta, 59, 1259, 10.1016/0016-7037(95)00042-X Van Cappellen P. and Gaillard J.-F. (1996) Biogeochemical Dynamics in aquatic sediments. In: Reactive Transport in Porous Media: General Principles and Application to Geochemical Processes (eds. P. C. Lichtner, C. I. Steefel and E. H. Oelkers). Mineral. Soc. Amer. pp. 335–376. Wagman, 1982, The NBS tables of chemical thermodynamic properties – selected values for inorganic and C-1 and C-2 organic substances in SI units, J. Phys. Chem. Ref. Data, 11, 1 Westrich, 1984, The role of sedimentary organic matter in bacterial sulfate reduction: the G model tested, Limnol. Oceanogr., 29, 236, 10.4319/lo.1984.29.2.0236