Parsimonious cluster systems

Advances in Data Analysis and Classification - Tập 3 - Trang 189-204 - 2009
François Brucker1, Alain Gély2
1Laboratoire LIF, UMR 6166, Centre de Mathématiques et Informatique, Marseille Cedex 13, France
2LITA, Paul Verlaine University, Metz Cedex, France

Tóm tắt

We introduce in this paper a new clustering structure, parsimonious cluster systems, which generalizes phylogenetic trees. We characterize it as the set of hypertrees stable under restriction and prove that this set is in bijection with a known dissimilarity model: chordal quasi-ultrametrics. We then present one possible way to graphically represent elements of this model.

Tài liệu tham khảo

Bandelt H-J, Dress WM (1989) Weak hierarchies associated with similarity measures—an additive clustering technique. Bull Math Biol 51: 133–166 Batbedat A (1990) Les approches pyramidales dans la classification arborée. Masson, Paris Barthélemy J-P, Brucker F (2008) Binary clustering. Discrete Appl Math 156: 1237–1250 Buneman P (1971) The recovery of trees from measures of dissimilarity. In: Kendall DG, Lechevallier Y, Tautu P (eds) Mathematics in archaeological and historical sciences. Edinburgh University Press, Harlow, pp 387–395 Brucker F (2001) Modèles de classification en classes empiétantes. Ph.D. Thesis, EHESS, France Brucker F (2005) From hypertrees to arboreal quasi-ultrametrics. Discrete Appl Math 147: 3–26 Brucker F (2006) Sub-dominant theory in numerical taxonomy. Discrete Appl Math 154: 1085–1099 Brucker F, Barthélemy J-P (2007) Eléments de Classification. Hermes Publishing, London Diatta J, Fichet B (1994) From Asprejan hierarchies and Bandelt-dress weak hierarchies to quasi-hierarchie. In: Diday E, Lechevallier Y, Schader M, Bertrand P (eds) New approaches in classification and data analysis. Springer, Berlin, pp 111–118 Diatta J, Fichet B (1998) Quasi-ultrametrics and their 2-balls hypergraph. Discrete Math 192: 87–102 Duchet P (1978) Propriétés de Helly et problèmes de représentations, in Problèmes combinatoires et théorie des graphes. Colloques internationaux du CNRS 260: 117–118 Felsenstein J (1983) Numerical taxonomy. Springer, Berlin Flament C (1978) Hypergraphes arborés. Discrete Math 21: 223–227 Kelly D, Rival I (1974) Crowns, fences, and dismantlable lattices. Canad J Math 26: 12571271 Legendre P, Makarenkov V (2002) Reconstruction of biogeographical and evolutionary networks using reticulograms. Syst Biol 51: 199–216 Lepouliquen M (2008) Filiation de manuscrits sanskrits par méthodes issues, pour partie, de la phylogénétique. Ph.D., EHESS, Paris Rival I (1974) Lattices with doubly irreducible elements. Canad Math Bull 17: 91–95 Semple C, Steel M (2003) Phylogenetics. Oxford University Press, New York Seitou N, Nei M (1987) The neighbor-joining method: a new method for recontruction of phylogenetic tree. Mol Biol Evol 4: 406–425 Tversky A (1977) Features of similarity. Psychol Rev 84: 327–352