Parsimonious cluster systems
Tóm tắt
We introduce in this paper a new clustering structure, parsimonious cluster systems, which generalizes phylogenetic trees. We characterize it as the set of hypertrees stable under restriction and prove that this set is in bijection with a known dissimilarity model: chordal quasi-ultrametrics. We then present one possible way to graphically represent elements of this model.
Tài liệu tham khảo
Bandelt H-J, Dress WM (1989) Weak hierarchies associated with similarity measures—an additive clustering technique. Bull Math Biol 51: 133–166
Batbedat A (1990) Les approches pyramidales dans la classification arborée. Masson, Paris
Barthélemy J-P, Brucker F (2008) Binary clustering. Discrete Appl Math 156: 1237–1250
Buneman P (1971) The recovery of trees from measures of dissimilarity. In: Kendall DG, Lechevallier Y, Tautu P (eds) Mathematics in archaeological and historical sciences. Edinburgh University Press, Harlow, pp 387–395
Brucker F (2001) Modèles de classification en classes empiétantes. Ph.D. Thesis, EHESS, France
Brucker F (2005) From hypertrees to arboreal quasi-ultrametrics. Discrete Appl Math 147: 3–26
Brucker F (2006) Sub-dominant theory in numerical taxonomy. Discrete Appl Math 154: 1085–1099
Brucker F, Barthélemy J-P (2007) Eléments de Classification. Hermes Publishing, London
Diatta J, Fichet B (1994) From Asprejan hierarchies and Bandelt-dress weak hierarchies to quasi-hierarchie. In: Diday E, Lechevallier Y, Schader M, Bertrand P (eds) New approaches in classification and data analysis. Springer, Berlin, pp 111–118
Diatta J, Fichet B (1998) Quasi-ultrametrics and their 2-balls hypergraph. Discrete Math 192: 87–102
Duchet P (1978) Propriétés de Helly et problèmes de représentations, in Problèmes combinatoires et théorie des graphes. Colloques internationaux du CNRS 260: 117–118
Felsenstein J (1983) Numerical taxonomy. Springer, Berlin
Flament C (1978) Hypergraphes arborés. Discrete Math 21: 223–227
Kelly D, Rival I (1974) Crowns, fences, and dismantlable lattices. Canad J Math 26: 12571271
Legendre P, Makarenkov V (2002) Reconstruction of biogeographical and evolutionary networks using reticulograms. Syst Biol 51: 199–216
Lepouliquen M (2008) Filiation de manuscrits sanskrits par méthodes issues, pour partie, de la phylogénétique. Ph.D., EHESS, Paris
Rival I (1974) Lattices with doubly irreducible elements. Canad Math Bull 17: 91–95
Semple C, Steel M (2003) Phylogenetics. Oxford University Press, New York
Seitou N, Nei M (1987) The neighbor-joining method: a new method for recontruction of phylogenetic tree. Mol Biol Evol 4: 406–425
Tversky A (1977) Features of similarity. Psychol Rev 84: 327–352