Chromatic posets
Tài liệu tham khảo
Aliste-Prieto, 2017, On trees with the same restricted U-polynomial and the Prouhet-Tarry-Escott problem, Discrete Math., 340, 1435, 10.1016/j.disc.2016.09.019
Aliste-Prieto, 2014, Proper caterpillars are distinguished by their chromatic symmetric function, Discrete Math., 315, 158, 10.1016/j.disc.2013.10.016
Birkhoff, 1912, A determinant formula for the number of ways of coloring a map, Ann. Math., 14, 43, 10.2307/1967597
Brightwell, 1990, Maximum hitting time for random walks on graphs, Random Struct. Algorithms, 1, 263, 10.1002/rsa.3240010303
Cho, 2019, On e-positivity and e-unimodality of chromatic quasisymmetric functions, SIAM J. Discrete Math., 33, 2286, 10.1137/18M1216201
Dahlberg, 2020, Resolving Stanley's e-positivity of claw-contractible-free graphs, J. Eur. Math. Soc., 22, 2673, 10.4171/JEMS/974
Dahlberg, 2018, Lollipop and lariat symmetric functions, SIAM J. Discrete Math., 32, 1029, 10.1137/17M1144805
Ellzey, 2018
Feige, 1995, A tight upper bound on the cover time for random walks on graphs, Random Struct. Algorithms, 6, 51, 10.1002/rsa.3240060106
Gasharov, 1996, Incomparability graphs of (3+1)-free posets are s-positive, Discrete Math., 157, 193, 10.1016/S0012-365X(96)83014-7
Gasharov, 1999, On Stanley's chromatic symmetric function and clawfree graphs, Discrete Math., 205, 229, 10.1016/S0012-365X(99)00106-5
Gebhard, 2001, A chromatic symmetric function in noncommuting variables, J. Algebraic Comb., 13, 227, 10.1023/A:1011258714032
Greene, 1996, On the interpretation of Whitney numbers through arrangements of hyperplanes, zonotopes, non-Radon partitions, and orientations of graphs, Trans. Am. Math. Soc., 280, 97, 10.1090/S0002-9947-1983-0712251-1
Guay-Paquet
Harada, 2018, The cohomology of abelian Hessenberg varieties and the Stanley-Stembridge conjecture, Sémin. Lothar. Comb., 80B, 1
Jonasson, 2000, Lollipop graphs are extremal for commute times, Random Struct. Algorithms, 16, 131, 10.1002/(SICI)1098-2418(200003)16:2<131::AID-RSA1>3.0.CO;2-3
Kaliszewski, 2015, Hook coefficients of chromatic functions, J. Comb., 6, 327
Macdonald, 2015
Martin, 2008, On distinguishing trees by their chromatic symmetric functions, J. Comb. Theory, Ser. A, 115, 237, 10.1016/j.jcta.2007.05.008
Orellana, 2014, Graphs with equal chromatic symmetric function, Discrete Math., 320, 1, 10.1016/j.disc.2013.12.006
Sagan, 2001
Shareshian, 2016, Chromatic quasisymmetric functions, Adv. Math., 295, 497, 10.1016/j.aim.2015.12.018
Stanley, 1973, Acyclic orientations of graphs, Discrete Math., 5, 171, 10.1016/0012-365X(73)90108-8
Stanley, 1995, A symmetric function generalization of the chromatic polynomial of a graph, Adv. Math., 111, 166, 10.1006/aima.1995.1020
Stanley, 2012
Stanley, 1999
Stanley, 1993, On immanants of Jacobi-Trudi matrices and permutations with restricted position, J. Comb. Theory, Ser. A, 62, 261, 10.1016/0097-3165(93)90048-D
Sundquist, 1997, A Robinson-Schensted algorithm for a class of partial orders, J. Comb. Theory, Ser. A, 79, 36, 10.1006/jcta.1997.2769
Wolfe, 1998, Symmetric chromatic functions, Pi Mu Epsilon J., 10, 643