Chromatic posets

Journal of Combinatorial Theory, Series A - Tập 184 - Trang 105496 - 2021
Samantha Dahlberg1, Adrian She2, Stephanie van Willigenburg3
1School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287, USA
2Department of Mathematics, University of Toronto, Toronto, ON, M5S 2E4, Canada
3Department of Mathematics, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada

Tài liệu tham khảo

Aliste-Prieto, 2017, On trees with the same restricted U-polynomial and the Prouhet-Tarry-Escott problem, Discrete Math., 340, 1435, 10.1016/j.disc.2016.09.019 Aliste-Prieto, 2014, Proper caterpillars are distinguished by their chromatic symmetric function, Discrete Math., 315, 158, 10.1016/j.disc.2013.10.016 Birkhoff, 1912, A determinant formula for the number of ways of coloring a map, Ann. Math., 14, 43, 10.2307/1967597 Brightwell, 1990, Maximum hitting time for random walks on graphs, Random Struct. Algorithms, 1, 263, 10.1002/rsa.3240010303 Cho, 2019, On e-positivity and e-unimodality of chromatic quasisymmetric functions, SIAM J. Discrete Math., 33, 2286, 10.1137/18M1216201 Dahlberg, 2020, Resolving Stanley's e-positivity of claw-contractible-free graphs, J. Eur. Math. Soc., 22, 2673, 10.4171/JEMS/974 Dahlberg, 2018, Lollipop and lariat symmetric functions, SIAM J. Discrete Math., 32, 1029, 10.1137/17M1144805 Ellzey, 2018 Feige, 1995, A tight upper bound on the cover time for random walks on graphs, Random Struct. Algorithms, 6, 51, 10.1002/rsa.3240060106 Gasharov, 1996, Incomparability graphs of (3+1)-free posets are s-positive, Discrete Math., 157, 193, 10.1016/S0012-365X(96)83014-7 Gasharov, 1999, On Stanley's chromatic symmetric function and clawfree graphs, Discrete Math., 205, 229, 10.1016/S0012-365X(99)00106-5 Gebhard, 2001, A chromatic symmetric function in noncommuting variables, J. Algebraic Comb., 13, 227, 10.1023/A:1011258714032 Greene, 1996, On the interpretation of Whitney numbers through arrangements of hyperplanes, zonotopes, non-Radon partitions, and orientations of graphs, Trans. Am. Math. Soc., 280, 97, 10.1090/S0002-9947-1983-0712251-1 Guay-Paquet Harada, 2018, The cohomology of abelian Hessenberg varieties and the Stanley-Stembridge conjecture, Sémin. Lothar. Comb., 80B, 1 Jonasson, 2000, Lollipop graphs are extremal for commute times, Random Struct. Algorithms, 16, 131, 10.1002/(SICI)1098-2418(200003)16:2<131::AID-RSA1>3.0.CO;2-3 Kaliszewski, 2015, Hook coefficients of chromatic functions, J. Comb., 6, 327 Macdonald, 2015 Martin, 2008, On distinguishing trees by their chromatic symmetric functions, J. Comb. Theory, Ser. A, 115, 237, 10.1016/j.jcta.2007.05.008 Orellana, 2014, Graphs with equal chromatic symmetric function, Discrete Math., 320, 1, 10.1016/j.disc.2013.12.006 Sagan, 2001 Shareshian, 2016, Chromatic quasisymmetric functions, Adv. Math., 295, 497, 10.1016/j.aim.2015.12.018 Stanley, 1973, Acyclic orientations of graphs, Discrete Math., 5, 171, 10.1016/0012-365X(73)90108-8 Stanley, 1995, A symmetric function generalization of the chromatic polynomial of a graph, Adv. Math., 111, 166, 10.1006/aima.1995.1020 Stanley, 2012 Stanley, 1999 Stanley, 1993, On immanants of Jacobi-Trudi matrices and permutations with restricted position, J. Comb. Theory, Ser. A, 62, 261, 10.1016/0097-3165(93)90048-D Sundquist, 1997, A Robinson-Schensted algorithm for a class of partial orders, J. Comb. Theory, Ser. A, 79, 36, 10.1006/jcta.1997.2769 Wolfe, 1998, Symmetric chromatic functions, Pi Mu Epsilon J., 10, 643