Wetting Behavior of Mold Flux Droplet on Steel Substrate With or Without Interfacial Reaction

Metallurgical and Materials Transactions B - Tập 48 - Trang 1943-1950 - 2017
Lejun Zhou1,2, Jingwen Li1, Wanlin Wang1,2, Il Sohn3
1School of Metallurgy and Environment, Central South University, Changsha, People’s Republic of China
2National Center for International Research of Clean Metallurgy, Central South University, Changsha, People’s Republic of China
3The Department of Materials Science and Engineering, Yonsei University, Seoul, South Korea

Tóm tắt

The slag entrapment in mold tends to cause severe defects on the slab surface, especially for casting steels containing active alloy elements such as Al, Ti, and Mn. The wetting behavior of molten mold flux on the initial solidified shell is considered to be a key factor to determine the entrapment of mold slag on the shell surface. Therefore, the wetting behavior of mold flux droplet on the steel substrate with or without interfacial reaction was investigated by the sessile drop method. The results indicated that the melting process of mold flux has a significant influence on the variation of contact angle, and the final contact angle for Flux1 droplet on 20Mn23AlV is only 15 deg, which is lower than the other two cases due to the intensive interracial reactions occurring in this case. In addition, the thickness of the interaction layer for the case of Flux1 on 20Mn23AlV is 10-μm greater than the other two cases, which confirms that the most intensive reactions occurred at the interface area. The microstructure and element distribution at the interface analyzed by a scanning electron microscope (SEM) and energy dispersive spectrum (EDS) suggested that the increase of wettability of mold flux droplet on the steel substrate is caused by the migration of Al, Mn, and Si elements occurring in the vicinity of the interface. The results obtained in this article can reveal the mechanism of flux entrapment by hook or shell and provide theoretic guidance for mold flux design and optimization.

Tài liệu tham khảo

L. Zhang and B. Thomas: ISIJ Int., 2003, vol. 43, pp. 271–91. L. Zhou and W. Wang: JOM, 2014, vol. 66, pp. 1595–1620. J. Busch, J. Debarbadillo, and M. Krane: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 1595–1602. L. Zhang, B. Rietow, B. Thomas, and K. Eakin: ISIJ Int., 2006, vol. 46, pp. 670–79. J. Shereshefsky: J. Phys. Chem., 1931, vol. 35, pp. 1712–20. A. Nagashima: Int. J. Thermophys., 1990, vol. 11, pp. 417–32. J. Nowok, J. Hurley, and J. Bieber: J. Mater. Sci., 1995, vol. 30, pp. 361–64. K. Mills and Y. Su: Int. Mater. Rev., 2006, vol. 51, pp. 329–51. E. Jung, W. Kim, Il Sohn, and D. Min: J. Mater. Sci., 2010, vol. 45, pp. 2023–29. D. Skupien and D. Gaskell: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 921–25. S. Sukenaga, S. Haruki, Yoshitaka Nomoto, Noritaka Saito, and Kunihiko Nakashima: ISIJ Int., 2011, vol. 51, pp. 1285–89. M. Nakamoto, A. Kiyose, T. Tanaka, L. Holappa, and M. Hämäläinen: ISIJ Int., 2007, vol. 47, pp. 38–43. M. Wegener, L. Muhmood, S. Sun, and A. Deev: Metall. Mater. Trans. B, 2015, vol. 46, pp. 316–27. Y. Su, Z. Li, and K. Mills: J. Mater. Sci., 2005, vol. 40, pp. 2201–05. B. Keene, K. Mills, J. Bryant, and E. Hondros: Can. Metall. Q., 1982, vol. 2, pp. 393–403. M. McNallan and T. Debroy: Metall. Trans. B, 1991, vol. 22, pp. 557–60. J. Brillo and I. Egry: J. Mater. Sci., 2005, vol. 40, pp. 2213–16. Y. Chung and A.W. Cramb: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 957–71. M. Rhamdhani, K. Coley, and G. Brooks: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 591–604. L. Zhou, W. Wang, F. Ma, J. Li, J.N. Wei, H. Matsuura, and F. Tsukihashi: Metall. Mater. Trans. B, 2012, vol. 47B, pp. 354–62. L. Zhou, W. Wang, B. Lu, and G. Wen: Met. Mater. Int., 2015, vol. 21, pp. 126–33. W. Wang, X. Yan, L. Zhou, S. Xie, and D. Huang: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 963–73. M. Van-Ende, M. Guo, R. Dekkers, M. Burty, J. Dyck, P. Jones, B. Blanpain, and P. Wollants: ISIJ Int., 2009, vol. 49, pp. 1133–40. A. Morales and R. Fruehan: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 1111–18. F. Tamura and H. Suito: Metall. Mater. Trans. B, 1993, vol. 24B, pp. 121–30. H. Gaye, L. Lucas, M. Olette, and P.V. Ribound: Can. Metall. Q., 1984, vol. 23, pp. 179–91. L. Zhou, W. Wang, D. Huang, J. Wei, and J. Li: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 925–36. L. Zhou, W. Wang, R. Liu, and B. Thomas: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 1264–79.