Nanoparticle-based theranostic agents

Advanced Drug Delivery Reviews - Tập 62 Số 11 - Trang 1064-1079 - 2010
Jin Xie1, Seulki Lee2, Xiaohong Chen2
1Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892-2281, USA.
2Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 31 Center Dr, Suite 1C14, Bethesda, MD 20892-2281, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Del Vecchio, 2007, Nuclear imaging in cancer theranostics, Q. J. Nucl. Med. Mol. Imaging, 51, 152

Nie, 2007, Nanotechnology applications in cancer, Annu. Rev. Biomed. Eng., 9, 257, 10.1146/annurev.bioeng.9.060906.152025

Liu, 2007, Nanomedicine for drug delivery and imaging: a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles, Int. J. Cancer, 120, 2527, 10.1002/ijc.22709

Cai, 2008, Multimodality molecular imaging of tumor angiogenesis, J. Nucl. Med., 49, 113S, 10.2967/jnumed.107.045922

Cai, 2007, Nanoplatforms for targeted molecular imaging in living subjects, Small, 3, 1840, 10.1002/smll.200700351

Corot, 2006, Recent advances in iron oxide nanocrystal technology for medical imaging, Adv. Drug Deliv. Rev., 58, 1471, 10.1016/j.addr.2006.09.013

Park, 2009, New generation of multifunctional nanoparticles for cancer imaging and therapy, Adv. Funct. Mater., 19, 1553, 10.1002/adfm.200801655

Smith, 2008, Bioconjugated quantum dots for in vivo molecular and cellular imaging, Adv. Drug Deliv. Rev., 60, 1226, 10.1016/j.addr.2008.03.015

Morales, 1999, Surface and internal spin canting in gamma-Fe2O3 nanoparticles, Chem. Mater., 11, 3058, 10.1021/cm991018f

Xie, 2009, Iron oxide nanoparticle platform for biomedical applications, Curr. Med. Chem., 16, 1278, 10.2174/092986709787846604

Jun, 2008, Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences, Acc. Chem. Res., 41, 179, 10.1021/ar700121f

Xu, 2007, Monodisperse magnetic nanoparticles for biomedical applications, Polym. Int., 56, 821, 10.1002/pi.2251

Chouly, 1996, Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution, J. Microencapsul., 13, 245, 10.3109/02652049609026013

Corot, 2003, Comparison of different types of blood pool agents (P792, MS325, USPIO) in a rabbit MR angiography-like protocol, Invest. Radiol., 38, 311, 10.1097/01.rli.0000066814.82006.be

Duguet, 2006, Magnetic nanoparticles and their applications in medicine, Nanomedicine, 1, 157, 10.2217/17435889.1.2.157

Edelstein, 1996

Fleige, 2002, In vitro characterization of two different ultrasmall iron oxide particles for magnetic resonance cell tracking, Invest. Radiol., 37, 482, 10.1097/00004424-200209000-00002

Grancharov, 2005, Bio-functionalization of monodisperse magnetic nanoparticles and their use as biomolecular labels in a magnetic tunnel junction based sensor, J. Phys. Chem. B, 109, 13030, 10.1021/jp051098c

Ito, 2005, Medical application of functionalized magnetic nanoparticles, J. Biosci. Bioeng., 100, 1, 10.1263/jbb.100.1

Lu, 2007, Magnetic nanoparticles: synthesis, protection, functionalization, and application, Angew. Chem. Int. Ed., 46, 1222, 10.1002/anie.200602866

Kang, 1996, Synthesis and characterization of nanometer-size Fe3O4 and gamma-Fe2O3 particles, Chem. Mater., 8, 2209, 10.1021/cm960157j

Gupta, 2005, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials, 26, 3995, 10.1016/j.biomaterials.2004.10.012

Lanza, 2004, Magnetic resonance molecular imaging with nanoparticles, J. Nucl. Cardiol., 11, 733, 10.1016/j.nuclcard.2004.09.002

Mornet, 2004, Magnetic nanoparticle design for medical diagnosis and therapy, J. Mater. Chem., 14, 2161, 10.1039/b402025a

Harisinghani, 2003, Noninvasive detection of clinically occult lymph-node metastases in prostate cancer, N Engl J. Med., 348, 2491, 10.1056/NEJMoa022749

Lee, 2008, PET/MRI dual-modality tumor imaging using arginine-glycine-aspartic (RGD)-conjugated radiolabeled iron oxide nanoparticles, J. Nucl. Med., 49, 1371, 10.2967/jnumed.108.051243

Pirko, 2003, In vivo magnetic resonance imaging of immune cells in the central nervous system with superparamagnetic antibodies, FASEB J., 17, 179

Zhao, 2002, Differential conjugation of tat peptide to superparamagnetic nanoparticles and its effect on cellular uptake, Bioconjug. Chem., 13, 840, 10.1021/bc0255236

Kang, 2002, Magnetic resonance imaging of inducible E-selectin expression in human endothelial cell culture, Bioconjug. Chem., 13, 122, 10.1021/bc0155521

Josephson, 1999, High-efficiency intracellular magnetic labeling with novel superparamagnetic-tat peptide conjugates, Bioconjug. Chem., 10, 186, 10.1021/bc980125h

Hogemann, 2002, High throughput magnetic resonance imaging for evaluating targeted nanoparticle probes, Bioconjug. Chem., 13, 116, 10.1021/bc015549h

Park, 2005, One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles, Angew. Chem. Int. Ed., 44, 2872, 10.1002/anie.200461665

Kohler, 2004, A bifunctional poly(ethylene glycol) silane immobilized on metallic oxide-based nanoparticles for conjugation with cell targeting agents, J. Am. Chem. Soc., 126, 7206, 10.1021/ja049195r

Kohler, 2006, Methotrexate-immobilized poly(ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery, Small, 2, 785, 10.1002/smll.200600009

Kohler, 2005, Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells, Langmuir, 21, 8858, 10.1021/la0503451

Hwu, 2009, Targeted Paclitaxel by conjugation to iron oxide and gold nanoparticles, J. Am. Chem. Soc., 131, 66, 10.1021/ja804947u

Huh, 2005, In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals, J. Am. Chem. Soc., 127, 12387, 10.1021/ja052337c

Lee, 2007, Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging, Nat. Med., 13, 95, 10.1038/nm1467

Jain, 2008, Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging, Biomaterials, 29, 4012, 10.1016/j.biomaterials.2008.07.004

Yu, 2008, Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo, Angew. Chem. Int. Ed Engl., 47, 5362, 10.1002/anie.200800857

J. Xie, K. Chen, J. Huang, S. Lee, J. Wang, J. Gao, X. Li, X. Chen, PET/NIRF/MRI triple functional iron oxide nanoparticles, Biomaterials, 31 3016-3022.

Piao, 2008, Wrap-bake-peel process for nanostructural transformation from beta-FeOOH nanorods to biocompatible iron oxide nanocapsules, Nat. Mater., 7, 242, 10.1038/nmat2118

Cheng, 2009, Porous hollow Fe(3)O(4) nanoparticles for targeted delivery and controlled release of cisplatin, J. Am. Chem. Soc., 131, 10637, 10.1021/ja903300f

Medarova, 2007, In vivo imaging of siRNA delivery and silencing in tumors, Nat. Med., 13, 372, 10.1038/nm1486

Lee, 2009, All-in-one target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery, Angew. Chem. Int. Ed Engl., 48, 4174, 10.1002/anie.200805998

Mornet, 2004, Magnetic nanoparticle design for medical diagnosis and therapy, J. Mater. Chem., 14, 2161, 10.1039/b402025a

Ito, 2005, Medical application of functionalized magnetic nanoparticles, J. Biosci. Bioeng., 100, 1, 10.1263/jbb.100.1

Neuberger, 2005, Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system, J. Magn. Magn. Mater., 293, 483, 10.1016/j.jmmm.2005.01.064

Lubbe, 1997, Preclinical experiences with magnetic drug targeting: tolerance and efficacy and clinical experiences with magnetic drug targeting: a phase I study with 4′-epidoxorubicin in 14 patients with advanced solid tumors—reply, Cancer Res., 57, 3064

Namiki, 2009, A novel magnetic crystal-lipid nanostructure for magnetically guided in vivo gene delivery, Nat. Nanotechnol., 4, 598, 10.1038/nnano.2009.202

Shinkai, 2001, Targeting hyperthermia for renal cell carcinoma using human MN antigen-specific magnetoliposomes, Jpn J. Cancer Res., 92, 1138, 10.1111/j.1349-7006.2001.tb01070.x

Primo, 2008, Photosensitizer-loaded magnetic nanoemulsion for use in synergic photodynamic and magnetohyperthermia therapies of neoplastic cells, J. Nanosci. Nanotechnol., 8, 5873, 10.1166/jnn.2008.476

Kim, 2004, Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping, Nat. Biotechnol., 22, 93, 10.1038/nbt920

S. Miao, S.G. Hickey, B. Rellinghaus, C. Waurisch, A. Eychmuller, Synthesis and characterization of cadmium phosphide quantum dots emitting in the visible red to near-infrared, J Am Chem Soc, 132 5613-5615.

Zimmer, 2006, Size series of small indium arsenide-zinc selenide core-shell nanocrystals and their application to in vivo imaging, J. Am. Chem. Soc., 128, 2526, 10.1021/ja0579816

Xie, 2008, InAs/InP/ZnSe core/shell/shell quantum dots as near-infrared emitters: bright, narrow-band, non-cadmium containing, and biocompatible, Nano Res., 1, 457, 10.1007/s12274-008-8048-x

Kim, 2005, Engineering InAs(x)P(1-x)/InP/ZnSe III-V alloyed core/shell quantum dots for the near-infrared, J. Am. Chem. Soc., 127, 10526, 10.1021/ja0434331

Bailey, 2004, Quantum dots in biology and medicine, Phys. E Low Dimension. Syst. Nanostruct., 25, 1, 10.1016/j.physe.2004.07.013

Green, 2004, Semiconductor quantum dots as biological imaging agents, Angew. Chem. Int. Ed Engl., 43, 4129, 10.1002/anie.200301758

Medintz, 2005, Quantum dot bioconjugates for imaging, labelling and sensing, Nat. Mater., 4, 435, 10.1038/nmat1390

Choi, 2007, Renal clearance of quantum dots, Nat. Biotechnol., 25, 1165, 10.1038/nbt1340

Kim, 2003, Oligomeric ligands for luminescent and stable nanocrystal quantum dots, J. Am. Chem. Soc., 125, 14652, 10.1021/ja0368094

Pinaud, 2004, Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides, J. Am. Chem. Soc., 126, 6115, 10.1021/ja031691c

Smith, 2008, Minimizing the hydrodynamic size of quantum dots with multifunctional multidentate polymer ligands, J. Am. Chem. Soc., 130, 11278, 10.1021/ja804306c

Clapp, 2004, Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors, J. Am. Chem. Soc., 126, 301, 10.1021/ja037088b

Medintz, 2004, A fluorescence resonance energy transfer-derived structure of a quantum dot-protein bioconjugate nanoassembly, Proc. Natl Acad. Sci. USA, 101, 9612, 10.1073/pnas.0403343101

Carion, 2007, Synthesis, encapsulation, purification and coupling of single quantum dots in phospholipid micelles for their use in cellular and in vivo imaging, Nat. Protoc., 2, 2383, 10.1038/nprot.2007.351

Dubertret, 2002, In vivo imaging of quantum dots encapsulated in phospholipid micelles, Science, 298, 1759, 10.1126/science.1077194

Osaki, 2004, A quantum dot conjugated sugar ball and its cellular uptake. On the size effects of endocytosis in the subviral region, J. Am. Chem. Soc., 126, 6520, 10.1021/ja048792a

Ballou, 2004, Noninvasive imaging of quantum dots in mice, Bioconjug. Chem., 15, 79, 10.1021/bc034153y

Mattheakis, 2004, Optical coding of mammalian cells using semiconductor quantum dots, Anal. Biochem., 327, 200, 10.1016/j.ab.2004.01.031

Gao, 2004, In vivo cancer targeting and imaging with semiconductor quantum dots, Nat. Biotechnol., 22, 969, 10.1038/nbt994

M. Nurunnabi, K.J. Cho, J.S. Choi, K.M. Huh, Y.K. Lee, Targeted near-IR QDs-loaded micelles for cancer therapy and imaging, Biomaterials.

Park, 2008, Micellar hybrid nanoparticles for simultaneous magnetofluorescent imaging and drug delivery, Angew. Chem. Int. Ed Engl., 47, 7284, 10.1002/anie.200801810

Bagalkot, 2007, Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer, Nano Lett., 7, 3065, 10.1021/nl071546n

Yuan, 2009, Anticancer drug-DNA interactions measured using a photoinduced electron-transfer mechanism based on luminescent quantum dots, Anal. Chem., 81, 362, 10.1021/ac801533u

Chen, 2005, Quantum dots to monitor RNAi delivery and improve gene silencing, Nucleic Acids Res., 33, e190, 10.1093/nar/gni188

Qi, 2008, Quantum dot-amphipol nanocomplex for intracellular delivery and real-time imaging of siRNA, ACS Nano, 2, 1403, 10.1021/nn800280r

Yezhelyev, 2008, Proton-sponge coated quantum dots for siRNA delivery and intracellular imaging, J. Am. Chem. Soc., 130, 9006, 10.1021/ja800086u

Derfus, 2007, Targeted quantum dot conjugates for siRNA delivery, Bioconjug. Chem., 18, 1391, 10.1021/bc060367e

Bonoiu, 2009, MMP-9 gene silencing by a quantum dot-siRNA nanoplex delivery to maintain the integrity of the blood brain barrier, Brain Res., 1282, 142, 10.1016/j.brainres.2009.05.047

Samia, 2003, Semiconductor quantum dots for photodynamic therapy, J. Am. Chem. Soc., 125, 15736, 10.1021/ja0386905

Willard, 2003, Quantum dots: resonant energy-transfer sensor, Nat. Mater., 2, 575, 10.1038/nmat972

Bakalova, 2004, Quantum dots as photosensitizers?, Nat. Biotechnol., 22, 1360, 10.1038/nbt1104-1360

Tsay, 2007, Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates, J. Am. Chem. Soc., 129, 6865, 10.1021/ja070713i

Samia, 2006, Quantum dot-based energy transfer: perspectives and potential for applications in photodynamic therapy, Photochem. Photobiol., 82, 617, 10.1562/2005-05-11-IR-525

Hsieh, 2006, Iridium-complex modified CdSe/ZnS quantum dots; a conceptual design for bi-functionality toward imaging and photosensitization, Chem. Commun. (Camb), 615, 10.1039/b517368j

Shi, 2006, Singlet oxygen generation from water-soluble quantum dot-organic dye nanocomposites, J. Am. Chem. Soc., 128, 6278, 10.1021/ja057959c

Daniel, 2004, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chem. Rev., 104, 293, 10.1021/cr030698+

Biju, 2008, Semiconductor quantum dots and metal nanoparticles: syntheses, optical properties, and biological applications, Anal. Bioanal. Chem., 391, 2469, 10.1007/s00216-008-2185-7

Niemeyer, 2001, Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science, Angew. Chem. Int. Ed., 40, 4128, 10.1002/1521-3773(20011119)40:22<4128::AID-ANIE4128>3.0.CO;2-S

Hu, 2006, Gold nanostructures: engineering their plasmonic properties for biomedical applications, Chem. Soc. Rev., 35, 1084, 10.1039/b517615h

Murphy, 2005, Anisotropic metal nanoparticles: synthesis, assembly, and optical applications, J. Phys. Chem. B, 109, 13857, 10.1021/jp0516846

Murphy, 2005, Surfactant-directed synthesis and optical properties of one-dimensional plasmonic metallic nanostructures, MRS Bull., 30, 349, 10.1557/mrs2005.97

Chen, 2005, Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents, Nano Lett., 5, 473, 10.1021/nl047950t

Wang, 2008, Ultrathin Au nanowires and their transport properties, J. Am. Chem. Soc., 130, 8902, 10.1021/ja803408f

Link, 1999, Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles, J. Phys. Chem. B, 103, 4212, 10.1021/jp984796o

Murphy, 2005, Anisotropic metal nanoparticles: synthesis, assembly, and optical applications, J. Phys. Chem. B, 109, 13857, 10.1021/jp0516846

Dixit, 2006, Synthesis and grafting of thioctic acid-PEG-folate conjugates onto Au nanoparticles for selective targeting of folate receptor-positive tumor cells, Bioconjug. Chem., 17, 603, 10.1021/bc050335b

Oyelere, 2007, Peptide-conjugated gold nanorods for nuclear targeting, Bioconjug. Chem., 18, 1490, 10.1021/bc070132i

Reynolds, 2006, Gold glyconanoparticles for mimics and measurement of metal ion-mediated carbohydrate-carbohydrate interactions, Langmuir, 22, 1156, 10.1021/la052261y

Rosi, 2006, Oligonucleotide-modified gold nanoparticles for intracellular gene regulation, Science, 312, 1027, 10.1126/science.1125559

Chang, 2005, Oriented assembly of Au nanorods using biorecognition system, Chem. Commun., 1092, 10.1039/b414059a

Huang, 2007, Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker, Nano Lett., 7, 1591, 10.1021/nl070472c

Gibson, 2007, Paclitaxel-functionalized gold nanoparticles, J. Am. Chem. Soc., 129, 11653, 10.1021/ja075181k

Chen, 2007, Methotrexate conjugated to gold nanoparticles inhibits tumor growth in a syngeneic lung tumor model, Mol. Pharm., 4, 713, 10.1021/mp060132k

Paciotti, 2004, Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery, Drug Deliv., 11, 169, 10.1080/10717540490433895

Goel, 2009, Biodistribution of TNF-alpha-coated gold nanoparticles in an in vivo model system, Nanomedicine (Lond), 4, 401, 10.2217/nnm.09.21

A.C. Powell, G.F. Paciotti, S.K. Libutti, Colloidal gold: a novel nanoparticle for targeted cancer therapeutics, Methods Mol Biol, 624 375-384.

Bhumkar, 2007, Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin, Pharm. Res., 24, 1415, 10.1007/s11095-007-9257-9

Cheng, 2008, Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer, J. Am. Chem. Soc., 130, 10643, 10.1021/ja801631c

Hone, 2002, Generation of cytotoxic singlet oxygen via phthalocyanine-stabilized gold nanoparticles: a potential delivery vehicle for photodynamic therapy, Langmuir, 18, 2985, 10.1021/la0256230

Prabaharan, 2009, Gold nanoparticles with a monolayer of doxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery, Biomaterials, 30, 6065, 10.1016/j.biomaterials.2009.07.048

McIntosh, 2001, Inhibition of DNA transcription using cationic mixed monolayer protected gold clusters, J. Am. Chem. Soc., 123, 7626, 10.1021/ja015556g

Han, 2006, Stability of gold nanoparticle-bound DNA toward biological, physical, and chemical agents, Chem. Biol. Drug Des., 67, 78, 10.1111/j.1747-0285.2005.00324.x

Han, 2005, Controlled recovery of the transcription of nanoparticle-bound DNA by intracellular concentrations of glutathione, Bioconjug. Chem., 16, 1356, 10.1021/bc050173j

Thomas, 2003, Conjugation to gold nanoparticles enhances polyethylenimine's transfer of plasmid DNA into mammalian cells, Proc. Natl Acad. Sci. USA, 100, 9138, 10.1073/pnas.1233634100

Huang, 2007, Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker, Nano Lett., 7, 1591, 10.1021/nl070472c

Skrabalak, 2008, Gold nanocages: synthesis, properties, and applications, Acc. Chem. Res., 41, 1587, 10.1021/ar800018v

Ji, 2007, Bifunctional gold nanoshells with a superparamagnetic iron oxide-silica core suitable for both MR imaging and photothermal therapy, J. Phys. Chem. C Nanomater. Interfaces, 111, 6245, 10.1021/jp0702245

J. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M.J. Welch, Y. Xia, Gold nanocages as photothermal transducers for cancer treatment, Small, 6 811-817.

Lu, 2009, Targeted photothermal ablation of murine melanomas with melanocyte-stimulating hormone analog-conjugated hollow gold nanospheres, Clin. Cancer Res., 15, 876, 10.1158/1078-0432.CCR-08-1480

W. Lu, G. Zhang, R. Zhang, L.G. Flores, 2nd, Q. Huang, J.G. Gelovani, C. Li, Tumor site-specific silencing of NF-kappaB p65 by targeted hollow gold nanosphere-mediated photothermal transfection, Cancer Res, 70 3177-3188.

Welsher, 2008, Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules, Nano Lett., 8, 586, 10.1021/nl072949q

Liu, 2008, Multiplexed multi-color Raman imaging of live cells with isotopically modified single walled carbon nanotubes, J. Am. Chem. Soc., 130, 13540, 10.1021/ja806242t

Kam, 2005, Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction, Proc. Natl Acad. Sci. USA, 102, 11600, 10.1073/pnas.0502680102

Liu, 1998, Fullerene pipes, Science, 280, 1253, 10.1126/science.280.5367.1253

Shi Kam, 2004, Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into Mammalian cells, J. Am. Chem. Soc., 126, 6850, 10.1021/ja0486059

Jiang, 2004, Protein immobilization on carbon nanotubes via a two-step process of diimide-activated amidation, J. Mater. Chem., 14, 37, 10.1039/b310359e

Baker, 2002, Covalently bonded adducts of deoxyribonucleic acid (DNA) oligonucleotides with single-wall carbon nanotubes: synthesis and hybridization, Nano Lett., 2, 1413, 10.1021/nl025729f

Huang, 2002, Attaching proteins to carbon nanotubes via diimide-activated amidation, Nano Lett., 2, 311, 10.1021/nl010095i

Pompeo, 2002, Water solubilization of single-walled carbon nanotubes by functionalization with glucosarnine, Nano Lett., 2, 369, 10.1021/nl015680y

Peng, 2003, Sidewall carboxylic acid functionalization of single-walled carbon nanotubes, J. Am. Chem. Soc., 125, 15174, 10.1021/ja037746s

Nguyen, 2002, Preparation of nucleic acid functionalized carbon nanotube arrays, Nano Lett., 2, 1079, 10.1021/nl025689f

Katz, 2004, Biomolecule-functionalized carbon nanotubes: applications in nanobioelectronics, Chemphyschem, 5, 1084, 10.1002/cphc.200400193

Bianco, 2005, Biomedical applications of functionalised carbon nanotubes, Chem. Commun. (Camb), 571, 10.1039/b410943k

Islam, 2003, High weight fraction surfactant solubilization of single-wall carbon nanotubes in water, Nano Lett., 3, 269, 10.1021/nl025924u

Nakashima, 2002, Water-soluble single-walled carbon nanotubes via noncovalent sidewall-functionalization with a pyrene-carrying ammonium ion, Chem. Lett., 638, 10.1246/cl.2002.638

Moore, 2003, Individually suspended single-walled carbon nanotubes in various surfactants, Nano Lett., 3, 1379, 10.1021/nl034524j

Chen, 2001, Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization, J. Am. Chem. Soc., 123, 3838, 10.1021/ja010172b

Kang, 2003, Micelle-encapsulated carbon nanotubes: a route to nanotube composites, J. Am. Chem. Soc., 125, 5650, 10.1021/ja034082d

Artyukhin, 2004, Layer-by-layer electrostatic self-assembly of polyelectrolyte nanoshells on individual carbon nanotube templates, Langmuir, 20, 1442, 10.1021/la035699b

Zheng, 2003, DNA-assisted dispersion and separation of carbon nanotubes, Nat. Mater., 2, 338, 10.1038/nmat877

Zheng, 2003, Structure-based carbon nanotube sorting by sequence-dependent DNA assembly, Science, 302, 1545, 10.1126/science.1091911

Johnson, 2008, Probing the structure of DNA-carbon nanotube hybrids with molecular dynamics, Nano Lett., 8, 69, 10.1021/nl071909j

Schipper, 2008, A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice, Nat. Nanotechnol., 3, 216, 10.1038/nnano.2008.68

Kam, 2006, Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway, Angew. Chem. Int. Ed Engl., 45, 577, 10.1002/anie.200503389

Jin, 2008, Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in NIH-3T3 cells, Nano Lett., 8, 1577, 10.1021/nl072969s

Kostarelos, 2007, Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type, Nat. Nanotechnol., 2, 108, 10.1038/nnano.2006.209

Pantarotto, 2004, Functionalized carbon nanotubes for plasmid DNA gene delivery, Angew. Chem. Int. Ed Engl., 43, 5242, 10.1002/anie.200460437

Singh, 2005, Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors, J. Am. Chem. Soc., 127, 4388, 10.1021/ja0441561

Pastorin, 2006, Double functionalization of carbon nanotubes for multimodal drug delivery, Chem. Commun. (Camb), 1182, 10.1039/b516309a

Kam, 2005, Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing, J. Am. Chem. Soc., 127, 12492, 10.1021/ja053962k

Liu, 2007, siRNA delivery into human T cells and primary cells with carbon-nanotube transporters, Angew. Chem. Int. Ed Engl., 46, 2023, 10.1002/anie.200604295

Dhar, 2008, Targeted single-wall carbon nanotube-mediated Pt(IV) prodrug delivery using folate as a homing device, J. Am. Chem. Soc., 130, 11467, 10.1021/ja803036e

Liu, 2008, Drug delivery with carbon nanotubes for in vivo cancer treatment, Cancer Res., 68, 6652, 10.1158/0008-5472.CAN-08-1468

Liu, 2009, Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery, Nano Res., 2, 85, 10.1007/s12274-009-9009-8

Liu, 2009, Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy, Angew. Chem. Int. Ed Engl., 48, 7668, 10.1002/anie.200902612

Kam, 2005, Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction, Proc. Natl Acad. Sci. USA, 102, 11600, 10.1073/pnas.0502680102

Moon, 2009, In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes, ACS Nano, 3, 3707, 10.1021/nn900904h

Ghosh, 2009, Increased heating efficiency and selective thermal ablation of malignant tissue with DNA-encased multiwalled carbon nanotubes, ACS Nano, 3, 2667, 10.1021/nn900368b

Jana, 2007, Synthesis of water-soluble and functionalized nanoparticles by silica coating, Chem. Mater., 19, 5074, 10.1021/cm071368z

Ow, 2005, Bright and stable core-shell fluorescent silica nanoparticles, Nano Lett., 5, 113, 10.1021/nl0482478

Tapec, 2002, Development of organic dye-doped silica nanoparticles for bioanalysis and biosensors, J. Nanosci. Nanotechnol., 2, 405, 10.1166/jnn.2002.114

Hsiao, 2008, Mesoporous silica nanoparticles as a delivery system of gadolinium for effective human stem cell tracking, Small, 4, 1445, 10.1002/smll.200701316

Wolcott, 2006, Silica-coated CdTe quantum dots functionalized with thiols for bioconjugation to IgG proteins, J. Phys. Chem. B, 110, 5779, 10.1021/jp057435z

Gerion, 2001, Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots, J. Phys. Chem. B, 105, 8861, 10.1021/jp0105488

Kang, 2009, Preparation and characterization of chemically functionalized silica-coated magnetic nanoparticles as a DNA separator, J. Phys. Chem. B, 113, 536, 10.1021/jp807081b

Wang, 2008, Monodispersed gold nanorod-embedded silica particles as novel Raman labels for biosensing, Adv. Funct. Mater., 18, 355, 10.1002/adfm.200700503

Lu, 2007, Bifunctional magnetic silica nanoparticles for highly efficient human stem cell labeling, Nano Lett., 7, 149, 10.1021/nl0624263

Kim, 2006, Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals, J. Am. Chem. Soc., 128, 688, 10.1021/ja0565875

Rieter, 2007, Hybrid silica nanoparticles for multimodal imaging, Angew. Chem. Int. Ed Engl., 46, 3680, 10.1002/anie.200604738

Salgueirino-Maceira, 2006, Composite silica spheres with magnetic and luminescent functionalities, Adv. Funct. Mater., 16, 509, 10.1002/adfm.200500565

Sathe, 2006, Mesoporous silica beads embedded with semiconductor quantum dots and iron oxide nanocrystals: dual-function microcarriers for optical encoding and magnetic separation, Anal. Chem., 78, 5627, 10.1021/ac0610309

Selvan, 2007, Synthesis of silica-coated semiconductor and magnetic quantum dots and their use in the imaging of live cells, Angew. Chem. Int. Ed Engl., 46, 2448, 10.1002/anie.200604245

Yi, 2005, Silica-coated nanocomposites of magnetic nanoparticles and quantum dots, J. Am. Chem. Soc., 127, 4990, 10.1021/ja0428863

Koole, 2008, Paramagnetic lipid-coated silica nanoparticles with a fluorescent quantum dot core: a new contrast agent platform for multimodality imaging, Bioconjug. Chem., 19, 2471, 10.1021/bc800368x

Roy, 2003, Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy, J. Am. Chem. Soc., 125, 7860, 10.1021/ja0343095

Kim, 2007, Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy, J. Am. Chem. Soc., 129, 2669, 10.1021/ja0680257

Slowing, 2008, Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers, Adv. Drug Deliv. Rev., 60, 1278, 10.1016/j.addr.2008.03.012

Vallet-Regi, 2007, Mesoporous materials for drug delivery, Angew. Chem. Int. Ed Engl., 46, 7548, 10.1002/anie.200604488

Manzano, 2009, Drug delivery from ordered mesoporous matrices, Expert Opin. Drug Deliv., 6, 1383, 10.1517/17425240903304024

Vivero-Escoto, 2009, Photoinduced intracellular controlled release drug delivery in human cells by gold-capped mesoporous silica nanosphere, J. Am. Chem. Soc., 131, 3462, 10.1021/ja900025f

Lai, 2003, A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules, J. Am. Chem. Soc., 125, 4451, 10.1021/ja028650l

Giri, 2005, Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles, Angew. Chem. Int. Ed Engl., 44, 5038, 10.1002/anie.200501819

Mal, 2003, Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica, Nature, 421, 350, 10.1038/nature01362

Casasus, 2004, Toward the development of ionically controlled nanoscopic molecular gates, J. Am. Chem. Soc., 126, 8612, 10.1021/ja048095i

Park, 2009, Biodegradable luminescent porous silicon nanoparticles for in vivo applications, Nat. Mater., 8, 331, 10.1038/nmat2398