Nanoparticle-based theranostic agents
Tóm tắt
Từ khóa
Tài liệu tham khảo
Del Vecchio, 2007, Nuclear imaging in cancer theranostics, Q. J. Nucl. Med. Mol. Imaging, 51, 152
Nie, 2007, Nanotechnology applications in cancer, Annu. Rev. Biomed. Eng., 9, 257, 10.1146/annurev.bioeng.9.060906.152025
Liu, 2007, Nanomedicine for drug delivery and imaging: a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles, Int. J. Cancer, 120, 2527, 10.1002/ijc.22709
Cai, 2008, Multimodality molecular imaging of tumor angiogenesis, J. Nucl. Med., 49, 113S, 10.2967/jnumed.107.045922
Cai, 2007, Nanoplatforms for targeted molecular imaging in living subjects, Small, 3, 1840, 10.1002/smll.200700351
Corot, 2006, Recent advances in iron oxide nanocrystal technology for medical imaging, Adv. Drug Deliv. Rev., 58, 1471, 10.1016/j.addr.2006.09.013
Park, 2009, New generation of multifunctional nanoparticles for cancer imaging and therapy, Adv. Funct. Mater., 19, 1553, 10.1002/adfm.200801655
Smith, 2008, Bioconjugated quantum dots for in vivo molecular and cellular imaging, Adv. Drug Deliv. Rev., 60, 1226, 10.1016/j.addr.2008.03.015
Morales, 1999, Surface and internal spin canting in gamma-Fe2O3 nanoparticles, Chem. Mater., 11, 3058, 10.1021/cm991018f
Xie, 2009, Iron oxide nanoparticle platform for biomedical applications, Curr. Med. Chem., 16, 1278, 10.2174/092986709787846604
Jun, 2008, Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences, Acc. Chem. Res., 41, 179, 10.1021/ar700121f
Xu, 2007, Monodisperse magnetic nanoparticles for biomedical applications, Polym. Int., 56, 821, 10.1002/pi.2251
Chouly, 1996, Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution, J. Microencapsul., 13, 245, 10.3109/02652049609026013
Corot, 2003, Comparison of different types of blood pool agents (P792, MS325, USPIO) in a rabbit MR angiography-like protocol, Invest. Radiol., 38, 311, 10.1097/01.rli.0000066814.82006.be
Duguet, 2006, Magnetic nanoparticles and their applications in medicine, Nanomedicine, 1, 157, 10.2217/17435889.1.2.157
Edelstein, 1996
Fleige, 2002, In vitro characterization of two different ultrasmall iron oxide particles for magnetic resonance cell tracking, Invest. Radiol., 37, 482, 10.1097/00004424-200209000-00002
Grancharov, 2005, Bio-functionalization of monodisperse magnetic nanoparticles and their use as biomolecular labels in a magnetic tunnel junction based sensor, J. Phys. Chem. B, 109, 13030, 10.1021/jp051098c
Ito, 2005, Medical application of functionalized magnetic nanoparticles, J. Biosci. Bioeng., 100, 1, 10.1263/jbb.100.1
Lu, 2007, Magnetic nanoparticles: synthesis, protection, functionalization, and application, Angew. Chem. Int. Ed., 46, 1222, 10.1002/anie.200602866
Kang, 1996, Synthesis and characterization of nanometer-size Fe3O4 and gamma-Fe2O3 particles, Chem. Mater., 8, 2209, 10.1021/cm960157j
Gupta, 2005, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials, 26, 3995, 10.1016/j.biomaterials.2004.10.012
Lanza, 2004, Magnetic resonance molecular imaging with nanoparticles, J. Nucl. Cardiol., 11, 733, 10.1016/j.nuclcard.2004.09.002
Mornet, 2004, Magnetic nanoparticle design for medical diagnosis and therapy, J. Mater. Chem., 14, 2161, 10.1039/b402025a
Harisinghani, 2003, Noninvasive detection of clinically occult lymph-node metastases in prostate cancer, N Engl J. Med., 348, 2491, 10.1056/NEJMoa022749
Lee, 2008, PET/MRI dual-modality tumor imaging using arginine-glycine-aspartic (RGD)-conjugated radiolabeled iron oxide nanoparticles, J. Nucl. Med., 49, 1371, 10.2967/jnumed.108.051243
Pirko, 2003, In vivo magnetic resonance imaging of immune cells in the central nervous system with superparamagnetic antibodies, FASEB J., 17, 179
Zhao, 2002, Differential conjugation of tat peptide to superparamagnetic nanoparticles and its effect on cellular uptake, Bioconjug. Chem., 13, 840, 10.1021/bc0255236
Kang, 2002, Magnetic resonance imaging of inducible E-selectin expression in human endothelial cell culture, Bioconjug. Chem., 13, 122, 10.1021/bc0155521
Josephson, 1999, High-efficiency intracellular magnetic labeling with novel superparamagnetic-tat peptide conjugates, Bioconjug. Chem., 10, 186, 10.1021/bc980125h
Hogemann, 2002, High throughput magnetic resonance imaging for evaluating targeted nanoparticle probes, Bioconjug. Chem., 13, 116, 10.1021/bc015549h
Park, 2005, One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles, Angew. Chem. Int. Ed., 44, 2872, 10.1002/anie.200461665
Kohler, 2004, A bifunctional poly(ethylene glycol) silane immobilized on metallic oxide-based nanoparticles for conjugation with cell targeting agents, J. Am. Chem. Soc., 126, 7206, 10.1021/ja049195r
Kohler, 2006, Methotrexate-immobilized poly(ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery, Small, 2, 785, 10.1002/smll.200600009
Kohler, 2005, Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells, Langmuir, 21, 8858, 10.1021/la0503451
Hwu, 2009, Targeted Paclitaxel by conjugation to iron oxide and gold nanoparticles, J. Am. Chem. Soc., 131, 66, 10.1021/ja804947u
Huh, 2005, In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals, J. Am. Chem. Soc., 127, 12387, 10.1021/ja052337c
Lee, 2007, Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging, Nat. Med., 13, 95, 10.1038/nm1467
Jain, 2008, Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging, Biomaterials, 29, 4012, 10.1016/j.biomaterials.2008.07.004
Yu, 2008, Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo, Angew. Chem. Int. Ed Engl., 47, 5362, 10.1002/anie.200800857
J. Xie, K. Chen, J. Huang, S. Lee, J. Wang, J. Gao, X. Li, X. Chen, PET/NIRF/MRI triple functional iron oxide nanoparticles, Biomaterials, 31 3016-3022.
Piao, 2008, Wrap-bake-peel process for nanostructural transformation from beta-FeOOH nanorods to biocompatible iron oxide nanocapsules, Nat. Mater., 7, 242, 10.1038/nmat2118
Cheng, 2009, Porous hollow Fe(3)O(4) nanoparticles for targeted delivery and controlled release of cisplatin, J. Am. Chem. Soc., 131, 10637, 10.1021/ja903300f
Medarova, 2007, In vivo imaging of siRNA delivery and silencing in tumors, Nat. Med., 13, 372, 10.1038/nm1486
Lee, 2009, All-in-one target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery, Angew. Chem. Int. Ed Engl., 48, 4174, 10.1002/anie.200805998
Mornet, 2004, Magnetic nanoparticle design for medical diagnosis and therapy, J. Mater. Chem., 14, 2161, 10.1039/b402025a
Ito, 2005, Medical application of functionalized magnetic nanoparticles, J. Biosci. Bioeng., 100, 1, 10.1263/jbb.100.1
Neuberger, 2005, Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system, J. Magn. Magn. Mater., 293, 483, 10.1016/j.jmmm.2005.01.064
Lubbe, 1997, Preclinical experiences with magnetic drug targeting: tolerance and efficacy and clinical experiences with magnetic drug targeting: a phase I study with 4′-epidoxorubicin in 14 patients with advanced solid tumors—reply, Cancer Res., 57, 3064
Namiki, 2009, A novel magnetic crystal-lipid nanostructure for magnetically guided in vivo gene delivery, Nat. Nanotechnol., 4, 598, 10.1038/nnano.2009.202
Shinkai, 2001, Targeting hyperthermia for renal cell carcinoma using human MN antigen-specific magnetoliposomes, Jpn J. Cancer Res., 92, 1138, 10.1111/j.1349-7006.2001.tb01070.x
Primo, 2008, Photosensitizer-loaded magnetic nanoemulsion for use in synergic photodynamic and magnetohyperthermia therapies of neoplastic cells, J. Nanosci. Nanotechnol., 8, 5873, 10.1166/jnn.2008.476
Kim, 2004, Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping, Nat. Biotechnol., 22, 93, 10.1038/nbt920
S. Miao, S.G. Hickey, B. Rellinghaus, C. Waurisch, A. Eychmuller, Synthesis and characterization of cadmium phosphide quantum dots emitting in the visible red to near-infrared, J Am Chem Soc, 132 5613-5615.
Zimmer, 2006, Size series of small indium arsenide-zinc selenide core-shell nanocrystals and their application to in vivo imaging, J. Am. Chem. Soc., 128, 2526, 10.1021/ja0579816
Xie, 2008, InAs/InP/ZnSe core/shell/shell quantum dots as near-infrared emitters: bright, narrow-band, non-cadmium containing, and biocompatible, Nano Res., 1, 457, 10.1007/s12274-008-8048-x
Kim, 2005, Engineering InAs(x)P(1-x)/InP/ZnSe III-V alloyed core/shell quantum dots for the near-infrared, J. Am. Chem. Soc., 127, 10526, 10.1021/ja0434331
Bailey, 2004, Quantum dots in biology and medicine, Phys. E Low Dimension. Syst. Nanostruct., 25, 1, 10.1016/j.physe.2004.07.013
Green, 2004, Semiconductor quantum dots as biological imaging agents, Angew. Chem. Int. Ed Engl., 43, 4129, 10.1002/anie.200301758
Medintz, 2005, Quantum dot bioconjugates for imaging, labelling and sensing, Nat. Mater., 4, 435, 10.1038/nmat1390
Kim, 2003, Oligomeric ligands for luminescent and stable nanocrystal quantum dots, J. Am. Chem. Soc., 125, 14652, 10.1021/ja0368094
Pinaud, 2004, Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides, J. Am. Chem. Soc., 126, 6115, 10.1021/ja031691c
Smith, 2008, Minimizing the hydrodynamic size of quantum dots with multifunctional multidentate polymer ligands, J. Am. Chem. Soc., 130, 11278, 10.1021/ja804306c
Clapp, 2004, Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors, J. Am. Chem. Soc., 126, 301, 10.1021/ja037088b
Medintz, 2004, A fluorescence resonance energy transfer-derived structure of a quantum dot-protein bioconjugate nanoassembly, Proc. Natl Acad. Sci. USA, 101, 9612, 10.1073/pnas.0403343101
Carion, 2007, Synthesis, encapsulation, purification and coupling of single quantum dots in phospholipid micelles for their use in cellular and in vivo imaging, Nat. Protoc., 2, 2383, 10.1038/nprot.2007.351
Dubertret, 2002, In vivo imaging of quantum dots encapsulated in phospholipid micelles, Science, 298, 1759, 10.1126/science.1077194
Osaki, 2004, A quantum dot conjugated sugar ball and its cellular uptake. On the size effects of endocytosis in the subviral region, J. Am. Chem. Soc., 126, 6520, 10.1021/ja048792a
Ballou, 2004, Noninvasive imaging of quantum dots in mice, Bioconjug. Chem., 15, 79, 10.1021/bc034153y
Mattheakis, 2004, Optical coding of mammalian cells using semiconductor quantum dots, Anal. Biochem., 327, 200, 10.1016/j.ab.2004.01.031
Gao, 2004, In vivo cancer targeting and imaging with semiconductor quantum dots, Nat. Biotechnol., 22, 969, 10.1038/nbt994
M. Nurunnabi, K.J. Cho, J.S. Choi, K.M. Huh, Y.K. Lee, Targeted near-IR QDs-loaded micelles for cancer therapy and imaging, Biomaterials.
Park, 2008, Micellar hybrid nanoparticles for simultaneous magnetofluorescent imaging and drug delivery, Angew. Chem. Int. Ed Engl., 47, 7284, 10.1002/anie.200801810
Bagalkot, 2007, Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer, Nano Lett., 7, 3065, 10.1021/nl071546n
Yuan, 2009, Anticancer drug-DNA interactions measured using a photoinduced electron-transfer mechanism based on luminescent quantum dots, Anal. Chem., 81, 362, 10.1021/ac801533u
Chen, 2005, Quantum dots to monitor RNAi delivery and improve gene silencing, Nucleic Acids Res., 33, e190, 10.1093/nar/gni188
Qi, 2008, Quantum dot-amphipol nanocomplex for intracellular delivery and real-time imaging of siRNA, ACS Nano, 2, 1403, 10.1021/nn800280r
Yezhelyev, 2008, Proton-sponge coated quantum dots for siRNA delivery and intracellular imaging, J. Am. Chem. Soc., 130, 9006, 10.1021/ja800086u
Derfus, 2007, Targeted quantum dot conjugates for siRNA delivery, Bioconjug. Chem., 18, 1391, 10.1021/bc060367e
Bonoiu, 2009, MMP-9 gene silencing by a quantum dot-siRNA nanoplex delivery to maintain the integrity of the blood brain barrier, Brain Res., 1282, 142, 10.1016/j.brainres.2009.05.047
Samia, 2003, Semiconductor quantum dots for photodynamic therapy, J. Am. Chem. Soc., 125, 15736, 10.1021/ja0386905
Tsay, 2007, Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates, J. Am. Chem. Soc., 129, 6865, 10.1021/ja070713i
Samia, 2006, Quantum dot-based energy transfer: perspectives and potential for applications in photodynamic therapy, Photochem. Photobiol., 82, 617, 10.1562/2005-05-11-IR-525
Hsieh, 2006, Iridium-complex modified CdSe/ZnS quantum dots; a conceptual design for bi-functionality toward imaging and photosensitization, Chem. Commun. (Camb), 615, 10.1039/b517368j
Shi, 2006, Singlet oxygen generation from water-soluble quantum dot-organic dye nanocomposites, J. Am. Chem. Soc., 128, 6278, 10.1021/ja057959c
Daniel, 2004, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chem. Rev., 104, 293, 10.1021/cr030698+
Biju, 2008, Semiconductor quantum dots and metal nanoparticles: syntheses, optical properties, and biological applications, Anal. Bioanal. Chem., 391, 2469, 10.1007/s00216-008-2185-7
Niemeyer, 2001, Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science, Angew. Chem. Int. Ed., 40, 4128, 10.1002/1521-3773(20011119)40:22<4128::AID-ANIE4128>3.0.CO;2-S
Hu, 2006, Gold nanostructures: engineering their plasmonic properties for biomedical applications, Chem. Soc. Rev., 35, 1084, 10.1039/b517615h
Murphy, 2005, Anisotropic metal nanoparticles: synthesis, assembly, and optical applications, J. Phys. Chem. B, 109, 13857, 10.1021/jp0516846
Murphy, 2005, Surfactant-directed synthesis and optical properties of one-dimensional plasmonic metallic nanostructures, MRS Bull., 30, 349, 10.1557/mrs2005.97
Chen, 2005, Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents, Nano Lett., 5, 473, 10.1021/nl047950t
Wang, 2008, Ultrathin Au nanowires and their transport properties, J. Am. Chem. Soc., 130, 8902, 10.1021/ja803408f
Link, 1999, Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles, J. Phys. Chem. B, 103, 4212, 10.1021/jp984796o
Murphy, 2005, Anisotropic metal nanoparticles: synthesis, assembly, and optical applications, J. Phys. Chem. B, 109, 13857, 10.1021/jp0516846
Dixit, 2006, Synthesis and grafting of thioctic acid-PEG-folate conjugates onto Au nanoparticles for selective targeting of folate receptor-positive tumor cells, Bioconjug. Chem., 17, 603, 10.1021/bc050335b
Oyelere, 2007, Peptide-conjugated gold nanorods for nuclear targeting, Bioconjug. Chem., 18, 1490, 10.1021/bc070132i
Reynolds, 2006, Gold glyconanoparticles for mimics and measurement of metal ion-mediated carbohydrate-carbohydrate interactions, Langmuir, 22, 1156, 10.1021/la052261y
Rosi, 2006, Oligonucleotide-modified gold nanoparticles for intracellular gene regulation, Science, 312, 1027, 10.1126/science.1125559
Chang, 2005, Oriented assembly of Au nanorods using biorecognition system, Chem. Commun., 1092, 10.1039/b414059a
Huang, 2007, Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker, Nano Lett., 7, 1591, 10.1021/nl070472c
Gibson, 2007, Paclitaxel-functionalized gold nanoparticles, J. Am. Chem. Soc., 129, 11653, 10.1021/ja075181k
Chen, 2007, Methotrexate conjugated to gold nanoparticles inhibits tumor growth in a syngeneic lung tumor model, Mol. Pharm., 4, 713, 10.1021/mp060132k
Paciotti, 2004, Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery, Drug Deliv., 11, 169, 10.1080/10717540490433895
Goel, 2009, Biodistribution of TNF-alpha-coated gold nanoparticles in an in vivo model system, Nanomedicine (Lond), 4, 401, 10.2217/nnm.09.21
A.C. Powell, G.F. Paciotti, S.K. Libutti, Colloidal gold: a novel nanoparticle for targeted cancer therapeutics, Methods Mol Biol, 624 375-384.
Bhumkar, 2007, Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin, Pharm. Res., 24, 1415, 10.1007/s11095-007-9257-9
Cheng, 2008, Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer, J. Am. Chem. Soc., 130, 10643, 10.1021/ja801631c
Hone, 2002, Generation of cytotoxic singlet oxygen via phthalocyanine-stabilized gold nanoparticles: a potential delivery vehicle for photodynamic therapy, Langmuir, 18, 2985, 10.1021/la0256230
Prabaharan, 2009, Gold nanoparticles with a monolayer of doxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery, Biomaterials, 30, 6065, 10.1016/j.biomaterials.2009.07.048
McIntosh, 2001, Inhibition of DNA transcription using cationic mixed monolayer protected gold clusters, J. Am. Chem. Soc., 123, 7626, 10.1021/ja015556g
Han, 2006, Stability of gold nanoparticle-bound DNA toward biological, physical, and chemical agents, Chem. Biol. Drug Des., 67, 78, 10.1111/j.1747-0285.2005.00324.x
Han, 2005, Controlled recovery of the transcription of nanoparticle-bound DNA by intracellular concentrations of glutathione, Bioconjug. Chem., 16, 1356, 10.1021/bc050173j
Thomas, 2003, Conjugation to gold nanoparticles enhances polyethylenimine's transfer of plasmid DNA into mammalian cells, Proc. Natl Acad. Sci. USA, 100, 9138, 10.1073/pnas.1233634100
Huang, 2007, Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker, Nano Lett., 7, 1591, 10.1021/nl070472c
Skrabalak, 2008, Gold nanocages: synthesis, properties, and applications, Acc. Chem. Res., 41, 1587, 10.1021/ar800018v
Ji, 2007, Bifunctional gold nanoshells with a superparamagnetic iron oxide-silica core suitable for both MR imaging and photothermal therapy, J. Phys. Chem. C Nanomater. Interfaces, 111, 6245, 10.1021/jp0702245
J. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M.J. Welch, Y. Xia, Gold nanocages as photothermal transducers for cancer treatment, Small, 6 811-817.
Lu, 2009, Targeted photothermal ablation of murine melanomas with melanocyte-stimulating hormone analog-conjugated hollow gold nanospheres, Clin. Cancer Res., 15, 876, 10.1158/1078-0432.CCR-08-1480
W. Lu, G. Zhang, R. Zhang, L.G. Flores, 2nd, Q. Huang, J.G. Gelovani, C. Li, Tumor site-specific silencing of NF-kappaB p65 by targeted hollow gold nanosphere-mediated photothermal transfection, Cancer Res, 70 3177-3188.
Welsher, 2008, Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules, Nano Lett., 8, 586, 10.1021/nl072949q
Liu, 2008, Multiplexed multi-color Raman imaging of live cells with isotopically modified single walled carbon nanotubes, J. Am. Chem. Soc., 130, 13540, 10.1021/ja806242t
Kam, 2005, Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction, Proc. Natl Acad. Sci. USA, 102, 11600, 10.1073/pnas.0502680102
Shi Kam, 2004, Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into Mammalian cells, J. Am. Chem. Soc., 126, 6850, 10.1021/ja0486059
Jiang, 2004, Protein immobilization on carbon nanotubes via a two-step process of diimide-activated amidation, J. Mater. Chem., 14, 37, 10.1039/b310359e
Baker, 2002, Covalently bonded adducts of deoxyribonucleic acid (DNA) oligonucleotides with single-wall carbon nanotubes: synthesis and hybridization, Nano Lett., 2, 1413, 10.1021/nl025729f
Huang, 2002, Attaching proteins to carbon nanotubes via diimide-activated amidation, Nano Lett., 2, 311, 10.1021/nl010095i
Pompeo, 2002, Water solubilization of single-walled carbon nanotubes by functionalization with glucosarnine, Nano Lett., 2, 369, 10.1021/nl015680y
Peng, 2003, Sidewall carboxylic acid functionalization of single-walled carbon nanotubes, J. Am. Chem. Soc., 125, 15174, 10.1021/ja037746s
Nguyen, 2002, Preparation of nucleic acid functionalized carbon nanotube arrays, Nano Lett., 2, 1079, 10.1021/nl025689f
Katz, 2004, Biomolecule-functionalized carbon nanotubes: applications in nanobioelectronics, Chemphyschem, 5, 1084, 10.1002/cphc.200400193
Bianco, 2005, Biomedical applications of functionalised carbon nanotubes, Chem. Commun. (Camb), 571, 10.1039/b410943k
Islam, 2003, High weight fraction surfactant solubilization of single-wall carbon nanotubes in water, Nano Lett., 3, 269, 10.1021/nl025924u
Nakashima, 2002, Water-soluble single-walled carbon nanotubes via noncovalent sidewall-functionalization with a pyrene-carrying ammonium ion, Chem. Lett., 638, 10.1246/cl.2002.638
Moore, 2003, Individually suspended single-walled carbon nanotubes in various surfactants, Nano Lett., 3, 1379, 10.1021/nl034524j
Chen, 2001, Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization, J. Am. Chem. Soc., 123, 3838, 10.1021/ja010172b
Kang, 2003, Micelle-encapsulated carbon nanotubes: a route to nanotube composites, J. Am. Chem. Soc., 125, 5650, 10.1021/ja034082d
Artyukhin, 2004, Layer-by-layer electrostatic self-assembly of polyelectrolyte nanoshells on individual carbon nanotube templates, Langmuir, 20, 1442, 10.1021/la035699b
Zheng, 2003, DNA-assisted dispersion and separation of carbon nanotubes, Nat. Mater., 2, 338, 10.1038/nmat877
Zheng, 2003, Structure-based carbon nanotube sorting by sequence-dependent DNA assembly, Science, 302, 1545, 10.1126/science.1091911
Johnson, 2008, Probing the structure of DNA-carbon nanotube hybrids with molecular dynamics, Nano Lett., 8, 69, 10.1021/nl071909j
Schipper, 2008, A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice, Nat. Nanotechnol., 3, 216, 10.1038/nnano.2008.68
Kam, 2006, Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway, Angew. Chem. Int. Ed Engl., 45, 577, 10.1002/anie.200503389
Jin, 2008, Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in NIH-3T3 cells, Nano Lett., 8, 1577, 10.1021/nl072969s
Kostarelos, 2007, Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type, Nat. Nanotechnol., 2, 108, 10.1038/nnano.2006.209
Pantarotto, 2004, Functionalized carbon nanotubes for plasmid DNA gene delivery, Angew. Chem. Int. Ed Engl., 43, 5242, 10.1002/anie.200460437
Singh, 2005, Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors, J. Am. Chem. Soc., 127, 4388, 10.1021/ja0441561
Pastorin, 2006, Double functionalization of carbon nanotubes for multimodal drug delivery, Chem. Commun. (Camb), 1182, 10.1039/b516309a
Kam, 2005, Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing, J. Am. Chem. Soc., 127, 12492, 10.1021/ja053962k
Liu, 2007, siRNA delivery into human T cells and primary cells with carbon-nanotube transporters, Angew. Chem. Int. Ed Engl., 46, 2023, 10.1002/anie.200604295
Dhar, 2008, Targeted single-wall carbon nanotube-mediated Pt(IV) prodrug delivery using folate as a homing device, J. Am. Chem. Soc., 130, 11467, 10.1021/ja803036e
Liu, 2008, Drug delivery with carbon nanotubes for in vivo cancer treatment, Cancer Res., 68, 6652, 10.1158/0008-5472.CAN-08-1468
Liu, 2009, Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery, Nano Res., 2, 85, 10.1007/s12274-009-9009-8
Liu, 2009, Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy, Angew. Chem. Int. Ed Engl., 48, 7668, 10.1002/anie.200902612
Kam, 2005, Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction, Proc. Natl Acad. Sci. USA, 102, 11600, 10.1073/pnas.0502680102
Moon, 2009, In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes, ACS Nano, 3, 3707, 10.1021/nn900904h
Ghosh, 2009, Increased heating efficiency and selective thermal ablation of malignant tissue with DNA-encased multiwalled carbon nanotubes, ACS Nano, 3, 2667, 10.1021/nn900368b
Jana, 2007, Synthesis of water-soluble and functionalized nanoparticles by silica coating, Chem. Mater., 19, 5074, 10.1021/cm071368z
Ow, 2005, Bright and stable core-shell fluorescent silica nanoparticles, Nano Lett., 5, 113, 10.1021/nl0482478
Tapec, 2002, Development of organic dye-doped silica nanoparticles for bioanalysis and biosensors, J. Nanosci. Nanotechnol., 2, 405, 10.1166/jnn.2002.114
Hsiao, 2008, Mesoporous silica nanoparticles as a delivery system of gadolinium for effective human stem cell tracking, Small, 4, 1445, 10.1002/smll.200701316
Wolcott, 2006, Silica-coated CdTe quantum dots functionalized with thiols for bioconjugation to IgG proteins, J. Phys. Chem. B, 110, 5779, 10.1021/jp057435z
Gerion, 2001, Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots, J. Phys. Chem. B, 105, 8861, 10.1021/jp0105488
Kang, 2009, Preparation and characterization of chemically functionalized silica-coated magnetic nanoparticles as a DNA separator, J. Phys. Chem. B, 113, 536, 10.1021/jp807081b
Wang, 2008, Monodispersed gold nanorod-embedded silica particles as novel Raman labels for biosensing, Adv. Funct. Mater., 18, 355, 10.1002/adfm.200700503
Lu, 2007, Bifunctional magnetic silica nanoparticles for highly efficient human stem cell labeling, Nano Lett., 7, 149, 10.1021/nl0624263
Kim, 2006, Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals, J. Am. Chem. Soc., 128, 688, 10.1021/ja0565875
Rieter, 2007, Hybrid silica nanoparticles for multimodal imaging, Angew. Chem. Int. Ed Engl., 46, 3680, 10.1002/anie.200604738
Salgueirino-Maceira, 2006, Composite silica spheres with magnetic and luminescent functionalities, Adv. Funct. Mater., 16, 509, 10.1002/adfm.200500565
Sathe, 2006, Mesoporous silica beads embedded with semiconductor quantum dots and iron oxide nanocrystals: dual-function microcarriers for optical encoding and magnetic separation, Anal. Chem., 78, 5627, 10.1021/ac0610309
Selvan, 2007, Synthesis of silica-coated semiconductor and magnetic quantum dots and their use in the imaging of live cells, Angew. Chem. Int. Ed Engl., 46, 2448, 10.1002/anie.200604245
Yi, 2005, Silica-coated nanocomposites of magnetic nanoparticles and quantum dots, J. Am. Chem. Soc., 127, 4990, 10.1021/ja0428863
Koole, 2008, Paramagnetic lipid-coated silica nanoparticles with a fluorescent quantum dot core: a new contrast agent platform for multimodality imaging, Bioconjug. Chem., 19, 2471, 10.1021/bc800368x
Roy, 2003, Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy, J. Am. Chem. Soc., 125, 7860, 10.1021/ja0343095
Kim, 2007, Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy, J. Am. Chem. Soc., 129, 2669, 10.1021/ja0680257
Slowing, 2008, Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers, Adv. Drug Deliv. Rev., 60, 1278, 10.1016/j.addr.2008.03.012
Vallet-Regi, 2007, Mesoporous materials for drug delivery, Angew. Chem. Int. Ed Engl., 46, 7548, 10.1002/anie.200604488
Manzano, 2009, Drug delivery from ordered mesoporous matrices, Expert Opin. Drug Deliv., 6, 1383, 10.1517/17425240903304024
Vivero-Escoto, 2009, Photoinduced intracellular controlled release drug delivery in human cells by gold-capped mesoporous silica nanosphere, J. Am. Chem. Soc., 131, 3462, 10.1021/ja900025f
Lai, 2003, A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules, J. Am. Chem. Soc., 125, 4451, 10.1021/ja028650l
Giri, 2005, Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles, Angew. Chem. Int. Ed Engl., 44, 5038, 10.1002/anie.200501819
Mal, 2003, Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica, Nature, 421, 350, 10.1038/nature01362
Casasus, 2004, Toward the development of ionically controlled nanoscopic molecular gates, J. Am. Chem. Soc., 126, 8612, 10.1021/ja048095i