Generation of Nanoparticle, Atomic‐Cluster, and Single‐Atom Cobalt Catalysts from Zeolitic Imidazole Frameworks by Spatial Isolation and Their Use in Zinc–Air Batteries

Angewandte Chemie - International Edition - Tập 58 Số 16 - Trang 5359-5364 - 2019
Xiaopeng Han1,2, Xiaofei Ling1,2, Ying Wang3,2, Tianyi Ma4, Cheng Zhong1, Wenbin Hu1, Yida Deng1
1School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350 P. R. China
2these authors contributed equally to this work
3School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, China
4Discipline of Chemistry, University of Newcastle, Callaghan, Newcastle, NSW, 2308 Australia

Tóm tắt

Abstract

The size effect of transition‐metal nanoparticles on electrocatalytic performance remains ambiguous especially when decreasing the size to the atomic level. Herein, we report the spatial isolation of cobalt species on the atomic scale, which was achieved by tuning the zinc dopant content in predesigned bimetallic Zn/Co zeolitic imidazole frameworks (ZnCo‐ZIFs), and led to the synthesis of nanoparticles, atomic clusters, and single atoms of Co catalysts on N‐doped porous carbon. This synthetic strategy allowed an investigation of the size effect on electrochemical behavior from nanometer to Ångström dimensions. Single‐atom Co catalysts showed superior bifunctional ORR/OER activity, durability, and reversibility in Zn–air batteries compared with the other derivatives and noble‐metal Pt/C+RuO2, which was attributed to the high reactivity and stability of isolated single Co atoms. Our findings open up a new avenue to regulate the metal particle size and catalytic performance of MOF derivatives.

Từ khóa


Tài liệu tham khảo

 

10.1126/science.1075094

10.1002/anie.201709124

10.1002/ange.201709124

 

10.1002/anie.201604802

10.1002/ange.201604802

10.1002/anie.201610119

10.1002/ange.201610119

10.1002/anie.201703864

10.1002/ange.201703864

 

10.1002/anie.201804349

10.1002/ange.201804349

10.1002/anie.201705778

10.1002/ange.201705778

10.1021/jacs.8b05134

10.1002/aenm.201800612

10.1002/anie.201811632

10.1002/ange.201811632

 

10.1038/nmat3712

10.1038/nchem.288

10.1021/nl2017459

 

10.1002/anie.201804958

10.1002/ange.201804958

10.1002/adma.201502315

10.1002/adfm.201802596

 

10.1021/ja058282w

10.1007/s10562-013-1172-6

 

10.1002/adma.201304867

10.1021/acs.chemmater.5b04780

 

10.1021/ja901006x

10.1016/j.nanoen.2018.08.027

10.1002/anie.201805696

10.1002/ange.201805696

 

10.1016/j.nanoen.2016.04.042

10.1002/anie.201702473

10.1002/ange.201702473

10.1021/acscatal.7b02326

 

10.1002/aenm.201702222

10.1002/anie.201600750

10.1002/ange.201600750

10.1016/j.nanoen.2016.12.008

10.1002/adma.201802011