Siliceous and organic-rich sedimentation during the Cenomanian–Turonian Oceanic Anoxic Event (OAE2) on the northern margin of Africa: an evidence from the Bargou area, Tunisia
Tóm tắt
The late Cenomanian–early Turonian deposits in Tunisia recording the OAE2 event are commonly attributed to the Bahloul Formation. These deposits are composed of dark clayey limestone and organic-rich black shales with abundant planktic foraminifera. At the Bargou area, Oued Kharroub section, these organic-rich deposits include siliceous beds with abundant radiolarians recalling the “Livello Bonarelli”. A total of 25 radiolarian species are identified with a maximum of 18 species per sample. Moreover, the species skeleton preservation is usually poor to moderate in the most studied samples [estimated preservation index (PI) values ranging between 4 and 6]. Two successive assemblages are distinguished. The oldest one (RI) is dominated by nassellarians, which includes mainly Stichomitra, Pseudodictyomitra and Rhopalosyringium genera. It is included within the upper part of foraminiferal Rotalipora cushmani Zone and lower part of Whiteinella archaeocretacea zone. In contrast, the youngest assemblage (RII), which belongs to the upper part of the W. archaeocretacea zone and the earliest Turonian Watinoceras ammonite assemblage, is dominated by spumellarians and includes mainly Archaeocenosphaera, Cavaspongia, Pseudoeucyrtis and Pyramispongia genera. In addition, major and trace elements are analysed to test whether the geochemical record was synchronous to the biotic event or not. Thus, selected crossplots, Al2O3 vs. SiO2 and Al2O3 vs. TiO2, are used to evaluate the detrital input, and V/Cr vs. V/(V + Ni) and U/Th vs. V/(V + Ni) are used to evaluate the bottom redox conditions and the primary productivity within the Bahloul Formation. A strong Si/Al increase is marked in the lower part of the siliceous and organic-rich Bahloul Formation that could be explained by a local increase in upwelling-related biogenic SiO2 (silica-secreting organisms). Relative low abundance of terrigenous-related Ti/Al and K/Al ratios and enrichment of some productivity proxies such as Ba (organic matter related trace elements) suggests that the Bahloul was of relatively elevated primary productivity and minimal detrital input. Enrichments in redox-sensitive trace metals U and V in the Bahloul Formation deposits and redox indices, such as V/(V + Ni), U/Th and V/Cr, indicate that oxygen-restricted conditions prevailed during the late Cenomanian–earliest Turonian times and correlate well with relative abundances of some radiolarian and foraminiferal paleo-environmental indicators. In addition, indicators of detrital flux variations are used. Al2O3 shows a slight positive correlation with TiO2 and a less distinct correlation with SiO2.
Tài liệu tham khảo
Abdallah H, Sassi S, Meister C, Souissi R (2000) Stratigraphie séquentielle et paléogéographie à la limite Cénomanien–Turonien dans la région de Gafsa–Chotts (Tunisie centrale). Cretac Res 21:35–106
Accarie M, Robaszynski F, Amedro F, Caron M, Zagrarni MF (1999) Stratigraphie événementielle au passage Cénomanien–Turonien dans le secteur occidental de la plateforme de Tunisie centrale (Formation Bahloul, région Kalaat Senen). Ann Min Géol 40:63–80
Algeo TJ, Maynard JB (2004) Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chem Geol 206:289–318
Algeo TJ, Lyons TW (2005) Mo-TOC covariation in modern anoxic marine environments: implication for analysis of paleoredox and hydrographic conditions. Paleoceanography, 21: PA1016
Amédro F, Accarie H, Robaszynski F (2005) Position de la limite Cénomanien–Turonien dans la Formation Bahloul de Tunisie centrale: apports intégrés des ammonites et des isotopes du carbone (δ13C). Eclog Geol Helv 98:151–167
Arthur MA, Jenkyns HC, Brumsack HJ, Schlanger SO (1990) Stratigraphy, geochemistry, and paleoceanography of organic carbon-rich cretaceous sequences. Cret Rese Events Rhythms 304:75–119
Bąk M (1999) Mid-Cretaceous Radiolarian zonation in the Polish part of the Pieniny Klippen Belt (Carpathians). Geol Carpath 50:21–31
Bąk M (2004) Radiolarian biostratigraphy of the upper Cenomanian–Lower Turonian deposits in the subsilesian nappe (outer western Carpathians). Geol Carpat 55(3):239–250
Barrett P (1998) A comparative organic geochemical and stable isotope study of the Cenomanian–Turonian organic-rich sediments from Tunisia, Germany and the UK. PhD thesis, University de Newcastle, p. 250.
Baumgartner PO, O’Dogherty L, Gorigan S, Urquhart E, Pillvutt A, De Wever P (1995) Middle Jurassic to Lower Cretaceous radiolaria of Tethys. Occurrences, systematics, biochronology. Mém Géol (Lausane) 23:1–1172
Bechtel A, Pevaz M, Püttmann W (1998) Role of organic matter and sulphate-reducing bacteria for metal sulphide precipitation in the Bahloul Formation at the Bou Grine Zn/Pb deposit (Tunisia). Chem Geol 144:1–21
Ben Ayed N, Viguier C (1981) Interprétation structurale de la Tunisie atlasique. CRAS Paris 292:1445–1448
Ben Ferjani A, Burollet PF, Mejri F (1990) Petroleum geology of Tunisia. Mem ETAP 1:1-135
Bengtson P (1996) The Turonian stage and substage boundaries (suppl.). Bull nst Roy Sci Nat Belg 66:69–79
Bishop WF (1988) Petroleum geology of east-central Tunisia. AAPG Bull 72(9):1033–1054
Boltenhagen C, Mahjoub MN (1974) Divers rapports inedits sur la geologie du Crétacé moyen de Tunisie Centrale. Internal Report ETAP.
Bragina LG (2004) Cenomanian–Turonian radiolarians of Northern Turkey and Crimean mountains. Paleontological Journal supplement 38:S325–S456
Bralower TJ, Arthur MA, Leckie RM, Sliter WV, Allard DJ, Schlanger SO (1994) Timing and paleoceanography of oceanic dysoxia/anoxia in the late Barremian early Aptian (Early Cretaceous). Palaios 9:335–369
Brumsack H J (1986) The inorganic geochemistry of Cretaceous black shales (DSDP leg 41) in comparison to modern upwelling sediments from the Gulf of California. In: Summerhayes, CP, Shackleton, NJ (eds.), North Atlantic palaeoceanography. Geol. Soc. Spec. Publ. 21: 447–462
Brumsack HJ (1989) Geochemistry of recent TOC-rich sediments from the Gulf of California and the Black Sea. Geol Rundsch 78:851–882
Brumsack H-J (2006) The trace metal content of recent organic carbon-rich sediments: implications for cretaceous black shale formation. Palaeog Palaeoclim Palaeoecol 232: 344–361
Burollet PF (1956) Contribution à l’étude à l’étude stratigraphique de la Tunisie centrale. Ann Min Géol 18:1–350
Calvert SE, Pedersen TF (1996) Sedimentary geochemistry of manganese: implications for the environment of formation of manganiferous black shales. Econ Geol 91:36–47
Caron M, Robaszynski F, Amedro F, Baudin F, Deckonink JF, Hochuli P, Von Salis Perch Nielsen K, Tribovillard N (1999) Estimation de la durée de l’événement anoxique global au passage Cénomanien Turonien. Approche cyclostratigraphique dans la Formation Bahloul en Tunisie centrale. Bull Soc Géol France 170:145–160
Caron M, Dall’Agnolo S, Accarie H, Barrera E, Kauffman EG, Amédro F, Robaszynski F (2006) High-resolution stratigraphy of the Cenomanian–Turonian boundary interval at Pueblo (USA) and wadi Bahloul (Tunisia): stable isotope and bio-events correlation. Geobios 39(2):171–200
Danelian T, Frydas D (1998) Late Quaternary polycystine radiolarians and sillicoflagellates of diatomaceous sapropel from the Eastern Mediterranean, Sites 969 and 971. In: Robertson AHF, Emeis K-C, Camerlenghi A (eds.). Proceedings of the ocean drilling program, scientific results, vol. 160, pp. 137–147
De Wever P, Vishnevskaya V S (1997) Mesozoic radiolarians from the European Platform: a review. In Crasquin-Soleau S, De Wever P (eds), Peri-tethys: stratigraphic correlations. Geodiversitas 19(2): 319–381.
De Wever P, Dumitrica P, Caulet J P, Nigrini C, Caridroit M (2001) Radiolarians in the sedimentary record. Gordon and Breach Science Publishers, Amsterdam, p. 533.
De Wever P, O’dogherty L, Caridroit M, Dumitrica P, Guex J, Nigrini C, Caulet JP (2003) Diversity of radiolarian families through time. Bull Soc Géol France 174(5):453–469
Dean WE, Gardner JV, Piper DZ (1997) Inorganic geochemical indicators of glacial–interglacial changes in productivity and anoxia on the California continental margin. Geochim Cosmochim Acta 61:4507–4518
Dumitrica P (1975) Cenomanian Radiolaria at Podul Dimdovitei. In: Micropaleontological guide to the Mesozoic and tertiary of the Romanian Carpathians; 14th European Micropaleontological Colloquium Romania. Institute of Geology and Geophysics, 87–89.
Dymond J, Collier R, McManus J, Honjo S, Manganini S (1997) Can the aluminium and titanium contents of ocean sediments be used to determine the paleoproductivity of the oceans? Paleoceanography 12:586–593
Erbacher J (1994) Entwicklung und Palaeoozeanographie mittelk-retazischer Radiolarien der westlichen Tethys (Italien) und des Nordatlatiks. Tuebinger Mikropalaeontologische Mitteilungen 12:1–120
Erbacher J (1998) Mid-Cretaceous Radiolarians from the eastern equatorial Atlantic and their paleoceanography. In Mascle J, Lohmann GP, Moulade M, (eds) Proceeding of the ocean drilling program science results, College Station, TX, USA, vol. 159, pp 363–373
Fournié D (1978) Nomenclature lithostratigraphique des series du Crétacé supérieur au Tertiaire de Tunisie. Bulletin du Centre de Recherche Exploration-Production. Elf-Aquitaine, Pau, vol. 2, pp 97–148
Golonka J (2004) Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic. Tectonophysics 381:235–273
Gromet LP, Dymek RF, Haskin LA, Korotev RL (1984) The “North American Shale Composite”: its compilation, major and trace elements characteristics. Geochim Cosmochim Acta 48:2469–2482
Hardenbol J, Thierry J, Farley MB, Jacquin T, De Graciansky P-C, Vail PR (1998) Cretaceous sequence chronostratigraphy. In: De Graciansky P-C, Hardenbol J, Jacquin T, Vail PR (eds) Mesozoic and Cenozoic sequence stratigraphy of European basins. Soc. Econ. Paleontol. Mineral. Spec. Publ., 60: 3–13
Hart MB (1999) The evolution and biodiversity of Cretaceous planktonic Foraminiferida. Geobios 32(2):247–255
Hatch JR, Leventhal JS (1992) Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, KS. Geol 117:287–302
Jenkyns HC (2010) Geochemistry of oceanic anoxic events. Geochem Geophys Geosyst 11: Q03004, doi:10.1029/2009GC002788
Jones B, Manning DAC (1994) Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chem Geol 111:111–129
Kiessling W (1996) Facies characterization of mid-Mesozoic deep-water sediments by quantitative analysis of siliceous microfaunas. Facies 35:237–274
Kuhnt W, Thurow T, Wiedmann J, Herbin JP (1986) Oceanic anoxic conditions around C/T boundary at the response of the biota. Mitt Geol-Paläont Int SCOPE/UNEP 60:205–246
Kuypers MMM, Pancost RD, Nijenhuis IA, Sinninghe Damsté JS (2002) Enhanced productivity led to increased organic carbon burial in the euxinic North Atlantic basin during the Late Cenomanian oceanic anoxic event. Paleoceanography 17(3):1–13
Layeb M (1990) Étude géologique, géochimique et minéralogique, régionale, des faciès riches en matière organique de la formation Bahloul d’âge Cénomano-Turonien dans le domaine de la Tunisie Nord-Centrale. PhD thesis, University of Tunis, Tunisia
Layeb M, Belayouni H (1989) La formation Bahloul au Centre et au Nord de la Tunisie: un exemple de bonne Roche mère de pétrole à fort intérêt pétrolier. Mém ETAP 3:489–503
Layeb M, Belayouni H (1999) Paléogéographie de la Formation Bahloul (passage Cénomanien–Turonien). Ann Min Géol 40:21–44
Leckie RM, Yuritich RF, West LOL, Finkelstein D, Schmidt M (1998) Paleoceanography of the southwestern Interior Sea during the time of the Cenomanian – Turonian boundary (late Cretaceous). In: Dean WE, Arthur MA (eds), Concepts in sedimentology and paleontology, vol. 6. Society Economic Paleontologists Minerologists, Tulsa, pp 101–126.
Lipinski M, Warning B, Brumsack H-J (2003) Trace metal signatures of Jurassic/Cretaceous black shales from the Norwegian Shelf and the Barent Sea. Palaeogeogr Palaeoclimatol Palaeoecol 190:459–475
Lisitzin AP (1985) The Silica cycle during the last Ice Age. Palaeog Palaeoclim Palaeoec 50:241–270
Lüning S, Kolonic S (2002) Uranium spectral gamma-ray response as a proxy for organic richness in black shales: applicability and limitations. J Petroleum Geology 26:153–174
Luning S, Kolonic S, Belhaj EM, Belhaj Z, Cota L, Baric G, Wagner T (2004) An integrated depositional model for the Cenomanian–Turonian organic-rich strata in North Africa. E Sc Rev 64(1–2):51–117
Lyons TW, Werne JP, Hollander DJ, Murray RW (2003) Contrasting sulfur geochemistry and Fe/Al and Mo/Al ratios across the last oxic-to-anoxic transition in the Cariaco Basin. Venezuela Chem Geol 195:131–157
Maamouri AL, Zaghbib-Turki D, Matmati MF, Chikhaoui M, Salaj J (1994) La Formation Bahloul en Tunisie centro-septrentionale: variations latérales, nouvelle datation et nouvelle interprétation en terme de stratigraphie séquentielle. J Afr Earth Sci 18(1):37–50
Martinez C, Truillet R (1987) Évolution structurale et paléogéographie de la Tunisie. Ment Soc Geol It 38:35–45
Mbassani P (2004) Le Cénomano–Turonien de l’Atlantique Nord (Bassin du Sénégal): environnement de dépôt et évolution diagénétique. Implications pétrolières. PhD thesis, Univ. Orléans, France
McManus J, Berelson WM, Klinkhammer GP, Johnson KS, Coale KH, Anderson RF, Kumar N, Burdige DJ, Hammond DE, Brumsack H-J, McCorkle DC, Rushdi A (1998) Geochemistry of barium in marine sediments: implications for its use as a paleoproxy. Geochim Cosmochim Acta 62:3453–3473
Messaoudi F, Hammouda F (1994) Evènement structuraux et types de pièges dans l’offshore Nord-Est de la Tunisie. Mem ETAP 4:55–64
Meyers SR, Sageman BB, Lyons TW (2005) Organic carbon burial rate and the molybdenum proxy: theoretical framework and application to Cenomanian–Turonian oceanic event 2. Paleoceanography 20:1–19
Mort H, Jacquat O, Adatte T, Steinmann P, Follmi K, Matera V, Berner Z, Stuben D (2007) The Cenomanian/Turonian anoxic event at the Bonarelli Level in Italy and Spain: enhanced productivity and/or better preservation? Cretaceous Research 28:597–612
Murata KJ, Larson RR (1975) Diagenesis of Miocene siliceous shales, temblor range, California. Journal of Research of the United-States Geological Survey 3:553–566
Musavu-Moussavou B, Danelian T (2006) The radiolarian biotic response to oceanic anoxic event 2 in the southern part of the Northern proto-Atlantic (Demerara Rise, ODP Leg 207). Revue de Micropaléontologie 49(3):141–163
Musavu-Moussavou B, Danelian T, Baudin F, Coccioni R, Fröhlich F (2007) The Radiolarian biotic response during OAE-2. A high-resolution study across the Bonarelli level at Bottaccione (Gubbio, Italy). Revue de Micropaléontologie 50(3):253–287
Naili H, Belhaj Z, Robaszynski F, Caron M, Depuy C (1995) Présence de roche mère “Bahloul” au passage Cénomanien-Turonien dans la région de Tebessa (Algérie). Mem ETAP 4:167–168
Nederbragt AJ, Fiorentino A (1999) Stratigraphy and paleoceanography of the Cenomanian–Turonian boundary event in Oued Mellegue, north-western Tunisia. Cret Res 20:47–62
O’Dogherty L (1994) Biochronology and paleoecology of Mid-Cretaceous radiolarians from Northern Apennines (Italy) and Betic Cordillera (Spain). Mém Géol (Lauisianne) 21:1–415
O’Dogherty L, Guex J (2002) Rates and pattern of evolution among Cretaceous radiolarians: relation with global paleocyanographic events. Micropaleontology 48(1):1–22
Pearce TJ, Wray D, Ratcliffe K D, Wright DK, Moscariello A (2005) Chemostrtaigraphy of the Upper Carboniferous Schooner Formation, southern North Sea. In: Collinson JD, Evans DJ, Holliday DW, Jones NS (eds), Carboniferous hydrocarbon geology: the southern North Sea and surrounding areas. Yorkshire Geological Society, Occassional Publications, 7:147–164.
Pearce MA, Jarvis I, Tocher BA (2009) The Cenomanian–Turonian boundary event, OAE2 and palaeoenvironmental change in epicontinental seas: New insights from the dinocyst and geochemical records. Palaeog Palaeoclim Palaeoec 280:207–234
Pedersen TF, Calvert SE (1990) Anoxia vs. productivity: what controls the formation of organic-carbon-rich sediments and sedimentary rocks? AAPG Bull., 74: 454–466.
Pessagno EA (1976) Radiolarian zonation and stratigraphy of the Late Cretaceous portion of the Great Valley Sequence, California Coast Range. Micropaleontology, Special Publication 2:1–195
Rimmer SM, Thompson JA, Goodnight SA, Robl TL (2004) Multiple controls on the preservation of organic matter in Devonian–Mississippian marine black shales: geochemical and petrographic evidence. Palaeogeogr Palaeoclimatol Palaeoecol 215:125–154
Riquier L, Tribovillard N, Averbuch O, Joachimski MM, Racki G, Devleeschouwer X, El Albani A, Riboulleau A (2005) Productivity and bottom water redox conditions at the Frasnian–Famennian boundary on the both sides of the Eovariscan Belt constraints from trace element geochemistry. In: Over DJ, Morrow JR, Wignall PB (eds) Understanding Late Devonian and Permian–Triassic biotic and climatic events: towards an integrated approach. Developments in Palaeontology and Stratigraphy 20:199–224.
Salvini G, Marcucci Passerini M (1998) The Radiolarian assemblages of “the Bonarelli horizon” in the Umbria Marche apennines and southern Alps (Italy). Cret Res 19:777–804
Schaaf A (1981) Late cretaceous radiolaria from deep sea drilling project leg 621. In: Thiede J, Vaillier TL, et al. (eds) Initial reports of the deep sea drilling project, vol. 62. Washington, pp. 419–470.
Schlanger S, Jenkyns HC (1976) Cretaceaous oceanic anoxic events: causes and consequences. Geol In Mijen 55(3–4):179–184
Schlanger SO, Arthur MA, Jenkyns HC, Scholle (1987) The Cenomanian–Turonian oceanic event. I. Stratigraphy and distributions of organic-rich beds and the marine 13C excursion. Spec Pub Geol Soc London 26:371–399
Scopelliti G, Bellanca A, Coccioni R, Luciani V, Neri R, Baudin F, Chiari M, Marcucci M (2006) High-resolution geochemical and biotic records of the Tethyan ‘Bonarelli Level’ (OAE2, latest Cenomanian) from the Calabianca–Guidaloca composite section, northwestern Sicily, Italy. Palaeogeography, Palaeoclimatology, Palaeoecology 208:293–317
Soua M (2005) Biostratigraphie de haute résolution des foraminifères planctoniques du passage Cénomanien Turonien et impact de l’événement anoxique EAO-2 sur ce groupe dans la marge sud de la Téthys, exemple régions de Jerissa et Bargou. Master thesis, University of Tunis, 1–169.
Soua M (2010) Time series (orbital cycles) analysis of the latest Cenomanian–Early Turonian sequence on the southern Tethyan margin using foraminifera. Geol Carp 61(2):111–120
Soua M (2011) Le Passage Cénomanien-Turonien en Tunisie: biostratigraphie, chimiostratigraphie, cyclostratigraphie et stratigraphie séquentielle. PhD thesis, University of Tunis, Tunisia
Soua M, Tribovillard N (2007) Depositional model at the Cenomanian/Turonian boundary for the Bahloul Formation. Tunisia Com Rend Geos 339(10):692–701
Soua M, Zaghbib-Turki D, O’Dogherty L (2006) Les réponses biotiques des radiolaires à l’événement anoxique du Cénomanien supérieur dans la marge sud Téthysienne (Tunisie). Mem ETAP 26:195–216
Soua M, Zaghbib-Turki D, Tribovillard N (2008) Riverine influxes, warm and humid climatic conditions during the latest Cenomanian–Early Turonian Bahloul deposition. Mem ETAP 27:194–200
Soua M, Echihi O, Herkat M, Zaghbib-Turki D, Smaoui J, Fakhfakh-Ben Jemia H, Belghaji H (2009) Structural context of the paleogeography of the Cenomanian–Turonian anoxic event in the eastern Atlas basins of the Maghreb. Com Rend Geos 341:1029–1037
Soua M, Fakhfakh-Ben Jemia H, Zaghbib-Turki D, Smaoui J, Layeb M, Saidi M, Turki MM (2011a) The organic-rich and siliceous Bahloul Formation: environmental evolution using facies analysis and Sr/Ca & Mn chemostratigraphy, Bargou area, Tunisia. In: Dar IA (ed), Geology/book 2. InTech, Rijeka
Soua M, Zaghbib-Turki D, Fakhfakh-Ben Jemia H, Smaoui J, Boukadi A (2011b) The geochemical record of the Cenomanian–Turonian anoxic event in Tunisia. Is it correlative and isochronous to the biotic signal? Act Geol Sin 85(5):801–840
Stampfli GM, Borel GD (2002) A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetis oceanic isochrons. Earth and Planetary Science Letters 196:17–33
Thurow J (1988) Cretaceous radiolarians of the North Atlantic Ocean: ODP Leg 103 (sites 638, 640, and 641) and DSDP Legs 93 (site 603) and 47B (site 398). In: Boillot G, Winterer EL, et al. Proc. ODP, Scientific results, vol. 103, pp. 379–418.
Thurow J, Kuhnt W (1986) Mid-Cretacrous of the Gibraltar Arch Area In: Summerhayes CP, Shackleton N J (eds) North Atlantic paleoceanography. Geol Soc Spec Pub 21:423–445.
Thurow J, Brumsack HJ, Rullkotter J, Littke R, Meyers P (1992) The Cenomanian/Turonian boundary event in the Indian Ocean—a key to understand the global picture. In: Duncan RA, Rea DK, Kidd RB, Rad UV, Weissel JK (eds), Synthesis of results from scientific drilling in the Indian Ocean. American Geophysical Union, Geoph. Mon., vol. 70, pp. 253–273.
Tribovillard N, Algeo TJ, Lyons T, Riboulleau A (2006) Trace metals as paleoredox and paleoproductivity proxies: an update Chem. Geol 232:12–32
Turki MM (1985) Polycinématique et contrôle sédimentaire associé sur la cicatrice Zaghouan-Nebhana. PhD thesis (State Doctorate) Rev. Sci. Ter., (INRST) 7:1–252
Tyson RV, Pearson TH (1991) Modern and ancient continental shelf anoxia: an overview. In: Tyson RV, Pearson TH (eds) Modern and ancient continental shelf anoxia. Geol Soc Spec Publ 58:1–26
Vishnevskaya V, De Wever P (1998) Upper Cretaceous radiolaria from the Russian Platform (Moscow Basin). Rev Micropal 41:235–265
Wedepohl KH (1978) Manganese: abundance in common sediments and sedimentary rocks. Handbook of Geochemistry. Springer, Berlin, pp 1–17, II/3
Wedepohl KH (1991) The composition of the upper earth’s crust and the natural cycles of selected metals. Metals in natural raw materials. Natural resources. In: Merian E (ed) Metals and their compounds in the environment. VCH, Weinheim, pp. 3–17
Westermann S, Caron M, Fleitmann D, Matera V, Adatte T, Follmi KB (2010) Evidence for oxic conditions during oceanic anoxic event 2 in the northern Tethyan pelagic realm. Cret Res 31:500–514
Yazykova EA, Peryt D, Donova TD, Kasintzova LI (2004) The Cenomanian/Turonian boundary in Sakhalin, Far East Russia: ammonites, inoceramids, foraminifera, and radiolarians. New Zealand Journal of Geology and Geophysics 47:291–320
Zaghbib-Turki D (1987) Les Échinides du Crétacé de Tunisie. Paléontologie Générale: Systématique, Paléoécologie, Paléobiogéographie. Thèse de Doctorat d’État es-Sciences Naturelles, Université de Tunis, p. 613
Zaghbib-Turki D (2003) Cretaceous coral-rudist formations in Tunisia, paleogeography and paleoecology. In: Gili E, Negra MH, Skelton PW (eds) North African cretaceous carbonate platform systems. Nato sciene series. Earth and Environmental Sciences, vol. 28, pp. 85–110
