Prevalence of Extended-Spectrum β-Lactamases in Multidrug-Resistant Klebsiella pneumoniae Isolates in Jordanian Hospitals

Journal of Epidemiology and Global Health - Tập 13 - Trang 180-190 - 2023
Suhaila A. Al-Sheboul1, Ghina S. Al-Madi1, Brent Brown2, Wail A. Hayajneh3,4
1Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Sciences and Technology (JUST), Irbid, Jordan
2Biochem123, London, UK
3Department of Pediatrics and Neonatology, Faculty of Medicine and King Abdullah University Hospital, Jordan University of Science and Technology (JUST), Irbid, Jordan
4Children’s National Hospital, Saint Louis University, St. Joseph’s University Medical Center, Paterson, USA

Tóm tắt

The increase in the prevalence of infections caused by certain bacteria, such as Klebsiella pneumonia (K. pneumoniae), is a global health concern. Bacterial production of an enzyme called extended-spectrum beta-lactamase (ESBL) can generate resistance to antimicrobial therapeutics. Therefore, between 2012 and 2013, we investigated K. pneumoniae that produce ESBLs with the prevalence of individual genes including blaSHV, blaCTX-M, blaTEM, and blaOXA isolated from clinical samples. A total of 99 variable diagnostic samples including blood from hematological malignancies (n = 14) or other clinical sources including sputum, pus, urine, and wound (n = 85) were analyzed. All samples' bacterial type was confirmed and their susceptibility to antimicrobial agents was established. Polymerase chain reaction (PCR) amplification was carried out to ascertain presence of specific genes that included blaSHV, blaCTX-M, blaTEM, and blaOXA. Plasmid DNA profiles were determined to assess significance between resistance to antimicrobial agents and plasmid number. It was found that among non-hematologic malignancy isolates, the highest rate of resistance was 87.9% to imipenem, with lowest rate being 2% to ampicillin. However, in hematologic malignancy isolates, the highest microbial resistance was 92.9% to ampicillin with the lowest rate of resistance at 28.6% to imipenem. Among collected isolates, 45% were ESBL-producers with 50% occurrence in hematologic malignancy individuals that were ESBL-producers. Within ESBL-producing isolates from hematologic malignancy individuals, blaSHV was detected in 100%, blaCTX-M in 85.7%, and blaTEM and blaOXA-1 at 57.1% and 27.1%, respectively. In addition, blaSHV, blaCTX-M, and blaOXA were found in all non-hematological malignancy individuals with blaTEM detected in 55.5% of samples. Our findings indicate that ESBLs expressing blaSHV and blaCTX-M genes are significantly prevalent in K. pneumoniae isolates from hematologic malignancy individuals. Plasmid analysis indicated plasmids in isolates collected from hematological malignancy individuals. Furthermore, there was a correlation between resistance to antimicrobial agents and plasmids within two groups analyzed. This study indicates an increase in incidence of K. pneumoniae infections displaying ESBL phenotypes in Jordan.

Tài liệu tham khảo

Naqid IA, Hussein NR, Balatay AA, Saeed KA, Ahmed HA. The antimicrobial resistance pattern of Klebsiella pneumonia isolated from the clinical specimens in Duhok City in Kurdistan Region of Iraq. J Kermanshah Univ Med Sci. 2020;24(2):e106135. https://doi.org/10.5812/jkums.106135. Özgen AO, Eyüpoğlu OE. Antibiotic susceptibility of Klebsiella pneumoniae strains isolated from clinical samples. J Turk Chem Soc Sect A Chem. 2020;7(1):319–30. https://doi.org/10.18596/jotcsa.635088. Oliveira R, Castro J, Silva S, Oliveira H, Saavedra MJ, Azevedo NF, Almeida C. Exploring the antibiotic resistance profile of clinical Klebsiella pneumoniae isolates in Portugal. Antibiotics (Basel). 2022;11:1613. https://doi.org/10.3390/antibiotics11111613. Advani SH, Banavali SD. Pattern of infection in hematologic malignancies: an Indian experience. Clin Infect Dis. 1989;11:S1621–8. https://doi.org/10.1093/clinids/11.supplement_7.s1621. de OliveiraCosta P, Atta EH, da Silva ARA. Infection with multidrug-resistant Gram-negative bacteria in a pediatric oncology intensive care unit: risk factors and outcomes. J Pediatr. 2015;91:435–41. https://doi.org/10.1016/j.jped.2014.11.009. Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev. 1998;11:589–603. https://doi.org/10.1128/CMR.11.4.589. Ssekatawa K, Byarugaba DK, Nakavuma JL, Kato CD, Ejobi F, Tweyongyere R, Eddie WM. Prevalence of pathogenic Klebsiella pneumoniae based on PCR capsular typing harbouring carbapenemases encoding genes in Uganda tertiary hospitals. Antimicrob Resist Infect Control. 2021. https://doi.org/10.1186/s13756-021-00923-w. Walter J, Haller S, Quinten C, Kärki T, Zacher B, Eckmanns T, Abu Sin M, Plachouras D, Kinross P, Suetens C. Healthcare-associated pneumonia in acute care hospitals in European Union/European economic area countries: an analysis of data from a point prevalence survey, 2011 to 2012. Eurosurveillance. 2018;23:1. https://doi.org/10.2807/1560-7917.ES.2018.23.32.1700843. Hansen DS, Gottschau A, Kolmos HJ. Epidemiology of Klebsiella bacteraemia: a case control study using Escherichia coli bacteraemia as control. J Hosp Infect. 1998;38:119–32. https://doi.org/10.1016/s0195-6701(98)90065-2. Moreno-Sanchez F, Gomez-Gomez B. Antibiotic management of patients with hematologic malignancies: from prophylaxis to unusual infections. Curr Oncol Rep. 2022;24:835–42. https://doi.org/10.1007/s11912-022-01226-y. Bengoechea JA, Sa Pessoa J. Klebsiella pneumoniae infection biology: living to counteract host defences. FEMS Microbiol Rev. 2019;43:123–44. https://doi.org/10.1093/femsre/fuy043. Raoofi S, Pashazadeh Kan F, Rafiei S, Hosseinipalangi Z, Noorani Mejareh Z, Khani S, Abdollahi B, Seyghalani Talab F, Sanaei M, Zarabi F, et al. Global prevalence of nosocomial infection: a systematic review and meta-analysis. PLoS One. 2023;18: e0274248. https://doi.org/10.1371/journal.pone.0274248. Stock I, Wiedemann B. Natural antibiotic susceptibility of Klebsiella pneumoniae, K. oxytoca, K. planticola, K. ornithinolytica and K. terrigena strains. J Med Microbiol. 2001;50:396–406. https://doi.org/10.1099/0022-1317-50-5-396. Gharavi MJ, Zarei J, Roshani-Asl P, Yazdanyar Z, Sharif M, Rashidi N. Comprehensive study of antimicrobial susceptibility pattern and extended spectrum beta-lactamase (ESBL) prevalence in bacteria isolated from urine samples. Sci Rep. 2021;11:578. https://doi.org/10.1038/s41598-020-79791-0. Jena J, Debata NK, Sahoo RK, Gaur M, Subudhi E. Molecular characterization of extended spectrum β-Lactamase-producing enterobacteriaceae strains isolated from a tertiary care hospital. Microb Pathog 2018;115:112–6. https://doi.org/10.1016/J.MICPATH.2017.12.056. Shehabia AA, Mahafzah A, Baadran I, Qadar FA, Dajani N. High incidence of Klebsiella pneumoniae clinical isolates to extended-spectrum β-lactam drugs in intensive care units. Diagn Microbiol Infect Dis. 2000;36:53–6. https://doi.org/10.1016/s0732-8893(99)00108-x. Rozwandowicz M, Brouwer MSM, Fischer J, Wagenaar JA, Gonzalez-Zorn B, Guerra B, Mevius DJ, Hordijk J. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J Antimicrob Chemother. 2018;73:1121–37. https://doi.org/10.1093/jac/dkx488. Gutiérrez-Gutiérrez B, Rodríguez-Baño J. Current options for the treatment of infections due to extended-spectrum beta-lactamase-producing Enterobacteriaceae in different groups of patients. Clin Microbiol Infect. 2019;25:932–42. https://doi.org/10.1016/j.cmi.2019.03.030. Sawa T, Kooguchi K, Moriyama K. Molecular diversity of extended-spectrum β-lactamases and carbapenemases, and antimicrobial resistance. J Intensive Care. 2020;8:13. https://doi.org/10.1186/s40560-020-0429-6. Gundran RS, Cardenio PA, Villanueva MA, Sison FB, Benigno CC, Kreausukon K, Pichpol D, Punyapornwithaya V. Prevalence and distribution of Bla(CTX-M), Bla(SHV), Bla(TEM) genes in extended-spectrum β-lactamase-producing E. coli isolates from broiler farms in the Philippines. BMC Vet Res. 2019;15:227. https://doi.org/10.1186/s12917-019-1975-9. Liakopoulos A, Mevius D, Ceccarelli D. A review of SHV extended-spectrum β-lactamases: neglected yet ubiquitous. Front Microbiol. 2016;7:1374. https://doi.org/10.3389/fmicb.2016.01374. Castanheira M, Simner PJ, Bradford PA. Extended-spectrum β-lactamases: An update on their characteristics, epidemiology and detection. JAC Antimicrob Resist. 2021;3(3):dlab092. https://doi.org/10.1093/jacamr/dlab092. Nasser M, Palwe S, Bhargava RN, Feuilloley MGJ, Kharat AS. Retrospective analysis on antimicrobial resistance trends and prevalence of β-Lactamases in Escherichia Coli and ESKAPE pathogens isolated from Arabian patients during 2000–2020. Microorganisms. 2020. https://doi.org/10.3390/microorganisms8101626. Deng J, Li Y-T, Shen X, Yu Y-W, Lin H-L, Zhao Q-F, Yang T-C, Li S-L, Niu J-J. Risk factors and molecular epidemiology of extended-spectrum β-lactamase-producing Klebsiella pneumoniae in Xiamen, China. J Glob Antimicrob Resist. 2017;11:23–7. https://doi.org/10.1016/j.jgar.2017.04.015. Babakhani S, Oloomi M. Transposons: The agents of antibiotic resistance in bacteria. J Basic Microbiol. 2018. https://doi.org/10.1002/jobm.201800204. Bush K, Bradford PA. β-Lactams and β-Lactamase inhibitors: An overview. Cold Spring Harb Perspect Med. 2016;6(8). https://doi.org/10.1101/cshperspect.a025247. Rawat D, Nair D. Extended-spectrum β-lactamases in gram negative bacteria. J Glob Infect Dis. 2010;2:263–74. https://doi.org/10.4103/0974-777X.68531. Pishtiwan AH, Khadija KM. Prevalence of BlaTEM, BlaSHV, and BlaCTX-M genes among ESBL producing Klebsiella Pneumoniae and Escherichia Coli isolated from Thalassemia patients in Erbil, Iraq. Mediterr J Hematol Infect Dis. 2019;11(1). https://doi.org/10.4084/MJHID.2019.041. Paterson DL, Bonomo RA. Extended-spectrum β-Lactamases: A clinical update. Clin Microbiol Rev. 2005. https://doi.org/10.1128/CMR.18.4.657-686.2005. Celenza G, Pellegrini C, Caccamo M, Segatore B, Amicosante G, Perilli M. Spread of BlaCTX-M-Type and BlaPER-2 β-Lactamase genes in clinical isolates from bolivian hospitals. J Antimicrobial Chemother. 2006;57(5). https://doi.org/10.1093/jac/dkl055. Halat DH, Moubareck CA. The current burden of carbapenemases: review of significant properties and Dissemination among gram-negative bacteria. Antibiotics. 2020. https://doi.org/10.3390/antibiotics9040186. Poirel L, Weldhagen GF, De Champs C, Nordmann P. A nosocomial outbreak of pseudomonas aeruginosa isolates expressing the extended-spectrum β-Lactamase GES-2 in South Africa. J Antimicrobial Chemother. 2002;49(3). https://doi.org/10.1093/jac/49.3.561. Beceiro A, Maharjan S, Gaulton T, Doumith M, Soares NC, Dhanji H, Warner M, Doyle M, Hickey M, Downie G, Bou G, Livermore DM, Woodford N. False extended-spectrum β-Lactamase phenotype in clinical isolates of Escherichia Coli associated with increased expression of OXA-1 or TEM-1 penicillinases and loss of porins. J Antimicrobial Chemother. 2011;66(9). https://doi.org/10.1093/jac/dkr265. Wolfensberger A, Kuster SP, Marchesi M, Zbinden R, Hombach M. The effect of varying multidrug-resistence (MDR) definitions on rates of MDR gram-negative rods. Antimicrob Resist Infect Control 2019;8(1). https://doi.org/10.1186/s13756-019-0614-3. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268-81. Kolar M, Sauer P, Faber E, Kohoutova J, Stosová T, Sedlackova M, Chroma M, Koukalova D, Indrak K. Prevalence and spread of Pseudomonas aeruginosa and Klebsiella pneumoniae. New Microbiol. 2009;32(1):67–76. Santos AL, Dos Santos AP, Ito CRM, Queiroz PHP, de Almeida JA, de Carvalho Júnior MAB, de Oliveira CZ, Avelino MAG, Wastowski IJ, Gomes GPLA, Souza ACSE, Vasconcelos LSNOL, Santos MO, da Silva CA, Carneiro LC. Profile of enterobacteria resistant to beta-lactams. Antibiotics (Basel). 2020;9(7):410.. https://doi.org/10.3390/antibiotics9070410. Shaikh S, Fatima J, Shakil S, Rizvi SM, Kamal MA. Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi J Biol Sci. 2015;22(1):90-101. https://doi.org/10.1016/j.sjbs.2014.08.002. Pagano L, Caira M, Trecarichi EM, Spanu T, Di Blasi R, Sica S, Sanguinetti M, Tumbarello M. Carbapenemase-producing Klebsiella pneumoniae and hematologic malignancies. Emerg Infect Dis. 2014;20(7):1235-6. https://doi.org/10.3201/eid2007.130094. Mahmoudi S, Pourakbari B, Rahbarimanesh A, Abdosalehi MR, Ghadiri K, Mamishi S. An Outbreak of ESBL-producing Klebsiella pneumoniae in an Iranian Referral Hospital: Epidemiology and Molecular Typing. Infect Disord Drug Targets. 2019;19(1):46-54. https://doi.org/10.2174/1871526518666180507121831. Gholipour A, Soleimani N, Shokri D, Mobasherizadeh S, Kardi M, Baradaran A. Phenotypic and molecular characterization of extended-spectrum β-lactamase produced by Escherichia coli, and Klebsiella pneumoniae isolates in an educational hospital. Jundishapur J Microbiol. 2014. https://doi.org/10.5812/jjm.11758. Zowawi HM, Balkhy HH, Walsh TR, Paterson DL. β-Lactamase production in key gram-negative pathogen isolates from the Arabian Peninsula. Clin Microbiol Rev. 2013;26(3):361-80. https://doi.org/10.1128/CMR.00096-12. Al-Zarouni M, Senok A, Rashid F, Al-Jesmi SM, Panigrahi D. Prevalence and antimicrobial susceptibility pattern of extended-spectrum beta-lactamase-producing Enterobacteriaceae in the United Arab Emirates. Med Princ Pract. 2008;17:32–6. https://doi.org/10.1159/000109587. Al-Agamy MHM, Shibl AM, Tawfik AF. Prevalence and molecular characterization of extended-spectrum β-lactamase-producing Klebsiella pneumoniae in Riyadh, Saudi Arabia. Ann Saudi Med. 2009;29:253–7. https://doi.org/10.4103/0256-4947.55306. Sarojamma V, Ramakrishna V. Prevalence of ESBL-Producing Klebsiella pneumoniae Isolates in Tertiary Care Hospital. ISRN Microbiol. 2011;2011:318348. https://doi.org/10.5402/2011/318348. Tängdén T, Cars O, Melhus A, Löwdin E. Foreign travel is a major risk factor for colonization with Escherichia coli producing CTX-M-type extended-spectrum beta-lactamases: a prospective study with Swedish volunteers. Antimicrob Agents Chemother. 2010;54(9):3564-8. https://doi.org/10.1128/AAC.00220-10. Hawser SP, Bouchillon SK, Hoban DJ, Badal RE, Hsueh P-R, Paterson DL. Emergence of high levels of extended-spectrum-β-lactamase-producing Gram-negative bacilli in the Asia-Pacific Region: data from the Study for Monitoring Antimicrobial Resistance trends (SMART) Program, 2007. Antimicrob Agents Chemother. 2009;53:3280–4. https://doi.org/10.1128/AAC.00426-09. Tola MA, Abera NA, Gebeyehu YM, Dinku SF, Tullu KD. High prevalence of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae fecal carriage among children under five years in Addis Ababa, Ethiopia. PLoS One. 2021;16(10):e0258117. https://doi.org/10.1371/journal.pone.0258117. Wollheim C, Guerra IMF, Conte VD, Hoffman SP, Schreiner FJ, Delamare APL, Barth AL, Echeverrigaray S, da Costa SOP. Nosocomial and community infections due to class a extended-spectrum β-lactamase (ESBLA)-producing Escherichia coli and Klebsiella spp. in Southern Brazil. Braz J Infect Dis. 2011;15:138–43. https://doi.org/10.1016/s1413-8670(11)70159-3. Müller-Schulte E, Tuo MN, Akoua-Koffi C, Schaumburg F, Becker SL. High prevalence of ESBL-producing Klebsiella pneumoniae in clinical samples from central Côte d'Ivoire. Int J Infect Dis. 2020;91:207–9. https://doi.org/10.1016/j.ijid.2019.11.024. Veeraraghavan B, Shankar C, Karunasree S, Kumari S, Ravi R, Ralph R. Carbapenem resistant Klebsiella pneumoniae isolated from bloodstream infection: Indian experience. Pathog Glob Health. 2017;111(5):240–246. https://doi.org/10.1080/20477724.2017.1340128. Memarmoghaddam M, Torbati HT, Sohrabi M, Mashhadi A, Kashi A. Effects of a selected exercise programon executive function of children with attention deficit hyperactivity disorder. J Med Life. 2016;9(4):373–9. Jacoby GA. AmpC beta-lactamases. Clin Microbiol Rev. 2009;22(1):161–82. https://doi.org/10.1128/CMR.00036-08.