Effects of Crystal Orientation and Pre-existing Defects on Nanoscale Mechanical Properties of Yttria-Stabilized Tetragonal Zirconia Thin Films

JOM - Tập 71 - Trang 3869-3875 - 2019
Ning Zhang1, Mohsen Asle Zaeem1
1Department of Mechanical Engineering, Colorado School of Mines, Golden, USA

Tóm tắt

Effects of crystal orientation and pre-existing defects on tensile properties of yttria-stabilized tetragonal zirconia (YSTZ) thin films are investigated by large-scale molecular dynamics simulations. The tensile strength and strain show clear orientation dependence. Under uniaxial tensile loading, the YSTZ thin films are found to fail through fracture along {110} cleavage planes. <110> dislocations are observed to form in the [100]-, [010]- and [001]-oriented models. Besides, the {110} cleavage planes are noticed to be rough, twisted and tangled around the center of the [100]- and [001]-oriented films, which is responsible for large strains at tensile strength. The simulated Young’s modulus and tensile strength are comparable to the experimental and first principle values. Overall, pre-existing defects could change the fracture pathway and negatively affect the tensile strength and strain in most of the studied cases.

Tài liệu tham khảo

F. Wakai, S. Sakaguchi, and Y. Matsuno, Adv. Ceram. Mater. 1, 259 (1986). I. Nettleship and R. Stevens, Int. J. High Tech. Ceram. 3, 1 (1987). J. Chevalier, L. Gremillard, A.V. Virkar, and D.R. Clarke, J. Am. Ceram. Soc. 92, 1901 (2009). B. Benali, M.H. Ghysel, I. Gallet, A. Huntz, and M. Andrieux, Appl. Surf. Sci. 253, 1222 (2006). I. Al-Dawery and E. Butler, Compos. Part A Appl. Sci. Manuf. 32, 1007 (2001). Z. Du, X.M. Zeng, Q. Liu, A. Lai, S. Amini, A. Miserez, C.A. Schuh, and C.L. Gan, Scr. Mater. 101, 40 (2015). A. Lai, Z. Du, C.L. Gan, and C.A. Schuh, Science 341, 1505 (2013). M. Asle Zaeem, N. Zhang, and M. Mamivand, Comput. Mater. Sci. 160, 120 (2019). N. Zhang and M. Asle Zaeem, Acta Mater. 120, 337 (2016). N. Zhang and M. Asle Zaeem, J. Appl. Phys. 122, 014302 (2017). N. Zhang and M. Asle Zaeem, J. Mater. Sci. 53, 5706 (2018). N. Zhang and M. Asle Zaeem, Eur. J. Mech. A. Solids 76, 80 (2019). X.M. Zeng, A. Lai, C.L. Gan, and C.A. Schuh, Acta Mater. 116, 124 (2016). N. Zhang and Y. Chen, J. Mater. Sci. 48, 785 (2013). N. Zhang, Q. Deng, Y. Hong, L. Xiong, S. Li, M. Strasberg, W. Yin, Y. Zou, C.R. Taylor, and G. Sawyer, J. Appl. Phys. 109, 063534 (2011). Y. Hong, N. Zhang, and M.A. Zaeem, Acta Mater. 145, 8 (2018). N. Zhang, Y. Hong, and Y. Chen, J. Mater. Sci. 54, 2779 (2019). W. Hu, S. Liu, Y. Zhang, J. Xiang, F. Wen, B. Xu, J. He, D. Yu, Y. Tian, and Z. Liu, J. Phys. Chem. C 116, 21052 (2012). N. Zhang and M. Asle Zaeem, npj Comput. Mater. 5, 54 (2019). X. Li and B. Hafskjold, J. Phys.: Condens. Matter 7, 1255 (1995). U. Messerschmidt, D. Baither, B. Baufeld, and M.J.M.S. Bartsch, Mater. Sci. Eng., A 233, 61 (1997). S. Plimpton, J. Comput. Phys. 117, 1 (1995). W.G. Hoover, Phys. Rev. A 31, 1695 (1985). L. Verlet, Phys. Rev. 159, 98 (1967). J. Zimmerman, C. Kelchner, P. Klein, J. Hamilton, and S. Foiles, Phys. Rev. Lett. 87, 165507 (2001). E.Y. Fogaing, Y. Lorgouilloux, M. Huger, and C. Gault, J. Mater. Sci. 41, 7663 (2006). E.H. Kisi and C.J. Howard, J. Am. Ceram. Soc. 81, 1682 (1998). G. Cousland, X. Cui, A. Smith, A. Stampfl, and C. Stampfl, J. Phys. Chem. Solids 122, 51 (2018). J.W. Adams, R. Ruh, and K. Mazdiyasni, J. Am. Ceram. Soc. 80, 903 (1997). J. Martínez-Fernández, M. Jiménez-Melendo, A. Domínguez-Rodríguez, K. Lagerlöf, and A. Heuer, Acta Metall. Mater. 41, 3171 (1993).