Pathwidth of cubic graphs and exact algorithms
Tài liệu tham khảo
Alber, 2002, Fixed parameter algorithms for dominating set and related problems on planar graphs, Algorithmica, 33, 461, 10.1007/s00453-001-0116-5
Beigel, 1999, Finding maximum independent sets in sparse and general graphs, 856
Bezrukov, 2004, New spectral lower bounds on the bisection width of graphs, Theoret. Comput. Sci., 320, 155, 10.1016/j.tcs.2004.03.059
Bodlaender, 1998, A partial k-arboretum of graphs with bounded treewidth, Theoret. Comput. Sci., 209, 1, 10.1016/S0304-3975(97)00228-4
Chen, 2003, Labeled search trees and amortized analysis: improved upper bounds for NP-hard problems, vol. 2906, 148
Ellis, 1994, The vertex separation and search number of a graph, Inform. and Comput., 113, 50, 10.1006/inco.1994.1064
Fomin, 2005, Measure and conquer: Domination—a case study, vol. 3580, 191
Fomin, 2004, Exact (exponential) algorithms for the dominating set problem, vol. 3353, 245
Fomin, 2004, A simple and fast approach for solving problems on planar graphs, vol. 2996, 56
Gramm, 2003, Worst-case upper bounds for MAX-2-SAT with an application to MAX-CUT, Discrete Appl. Math., 130, 139, 10.1016/S0166-218X(02)00402-X
F. Grandoni, Exact algorithms for hard graph problems, PhD thesis, Università di Roma “Tor Vergata”, Roma, Italy, March, 2004
F. Grandoni, A note on the complexity of minimum dominating set, J. Discrete Algorithms, in press
Impagliazzo, 2001, Which problems have strongly exponential complexity, J. Comput. System Sci., 63, 512, 10.1006/jcss.2001.1774
Jansen, 2001, Polynomial time approximation schemes for Max-Bisection on planar and geometric graphs, vol. 2010, 365
Johnson, 1999, What are the least tractable instances of max independent set?, 927
J. Kneis, D. Mölle, S. Richter, P. Rossmanith, Algorithms based in treewidth of sparse graphs, in: Proc. 31st Internat. Workshop on Graph-Theoretic Concepts in Computer Science (WG 2005), in: Lecture Notes in Comput. Sci., vol. 3787, Springer, Berlin, 2005, in press
Kojevnikov, 2006, A new approach for proving upper bounds for MAX-2-SAT
Kulikov, 2002, Solution of the maximum cut problem in time 2|E|/4, Zapiski Nauchnykh Seminarov (POMI), 293, 129
Monien, 2001, Upper bounds on the bisection width of 3- and 4-regular graphs, vol. 2136, 524
B. Randerath, I. Schiermeyer, Exact algorithms for MINIMUM DOMINATING SET, Technical Report zaik-469, Zentrum für Angewandte Informatik Köln, Germany, 2004
Reed, 1996, Paths, stars and the number three, Combin. Probab. Comput., 5, 277, 10.1017/S0963548300002042
Robertson, 1986, Graph minors. II. Algorithmic aspects of tree-width, J. Algorithms, 7, 309, 10.1016/0196-6774(86)90023-4
Robson
Tarjan, 1977, Finding a maximum independent set, SIAM J. Comput., 6, 537, 10.1137/0206038
Williams, 2004, A new algorithm for optimal constraint satisfaction and its implications, vol. 3142, 1227