Impact of stage configurations, lean-rich heat exchange and regeneration agents on the energy demand of a multistage fluidized bed TSA CO2 capture process

International Journal of Greenhouse Gas Control - Tập 72 - Trang 82-91 - 2018
Julius Pirklbauer1, Gerhard Schöny1, Tobias Pröll2, Hermann Hofbauer1
1Institute of Chemical, Environmental & Biological Engineering, TU Wien, Getreidemarkt 9/166, 1060 Vienna, Austria
2Department of Material Sciences and Process Engineering, University of Natural Resources and Life Sciences, Peter-Jordan Straße 82, 1190 Vienna, Austria

Tài liệu tham khảo

Ahn, 2013, Process configuration studies of the amine capture process for coal-fired power plants, Int. J. Greenh. Gas Control, 16, 29, 10.1016/j.ijggc.2013.03.002 Bailey, 2005, Post-combustion decarbonisation processes, Oil Gas Sci. Technol., 60, 461, 10.2516/ogst:2005028 Berger, 2011, Comparing physisorption and chemisorption solid sorbents for use separating CO2 from flue gas using temperature swing adsorption, Energy Procedia, 4, 562, 10.1016/j.egypro.2011.01.089 Bolhàr-Nordenkampf, 2009, Comprehensive modeling tool for chemical looping based processes, Chem. Eng. Technol., 32, 410, 10.1002/ceat.200800568 Burcat, A., McBride, B., (1997). Ideal gas thermodynamic data for combustion and air pollution use [WWW Document]. URL http://garfield.chem.elte.hu/Burcat/burcat.html. Dietrich, 2018, Experimental study of the adsorber performance in a multi-stage fluidized bed system for continuous CO 2 capture by means of temperature swing adsorption, Fuel Process. Technol., 173, 103, 10.1016/j.fuproc.2018.01.013 Drage, 2008, Thermal stability of polyethylenimine based carbon dioxide adsorbents and its influence on selection of regeneration strategies, Microporous Mesoporous Mat., 116, 504, 10.1016/j.micromeso.2008.05.009 Fauth, 2012, Investigation of porous silica supported mixed-amine sorbents for post-combustion CO 2 capture, Energy Fuels, 26, 2483, 10.1021/ef201578a Guío-pérez, 2013, Non intrusive online detection of ferromagnetic particles for measurement of bed density and residence time distribution in circulating fluidized bed systems, Proc. First SCEJ Symp. Fluid. Soc. Chem. Eng. Heesink, 2013, Cutting the cost of carbon capture, Power Eng. Int. Hofbauer, 2007 Knudsen, 2009, Experience with CO2 capture from coal flue gas in pilot-scale: testing of different amine solvents, Energy Procedia, 1, 783, 10.1016/j.egypro.2009.01.104 Krutka, 2013, Post-combustion CO2 capture using solid sorbents: 1 MW e pilot evaluation, Energy Procedia, 37, 73, 10.1016/j.egypro.2013.05.087 Langmuir, 1918, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40, 1361, 10.1021/ja02242a004 Lin, 2017, Heat transfer enhancement and optimization of Lean/Rich solvent cross exchanger for amine scrubbing, Energy Procedia, 114, 1890, 10.1016/j.egypro.2017.03.1320 MacDowell, 2010, An overview of CO2 capture technologies, Energy Environ. Sci., 3, 1645, 10.1039/c004106h Nelson, 2017, RTI’s solid sorbent-based CO 2 capture process: technical and economic lessons learned for application in coal-fired, NGCC, and cement plants, Energy Procedia, 114, 2506, 10.1016/j.egypro.2017.03.1409 Padurean, 2011, Multicriterial analysis of post-combustion carbon dioxide capture using alkanolamines, Int. J. Greenh. Gas Control, 5, 676, 10.1016/j.ijggc.2011.02.001 Pirngruber, 2013, A theoretical analysis of the energy consumption of post-combustion CO2 capture processes by temperature swing adsorption using solid sorbents, Int. J. Greenh. Gas Control, 14, 74, 10.1016/j.ijggc.2013.01.010 Pröll, 2008, Development and application of a simulation tool for biomass gasification based processes, Int. J. Chem. React. Eng., 6 Pröll, 2008, H2 rich syngas by selective CO2 removal from biomass gasification in a dual fluidized bed system − Process modelling approach, Fuel Process. Technol., 89, 1207, 10.1016/j.fuproc.2008.05.020 Pröll, 2009, A novel dual circulating fluidized bed system for chemical looping processes, AIChE J., 55, 3255, 10.1002/aic.11934 Pröll, 2016, Introduction and evaluation of a double loop staged fluidized bed system for post-combustion CO2 capture using solid sorbents in a continuous temperature swing adsorption process, Chem. Eng. Sci., 141, 166, 10.1016/j.ces.2015.11.005 Rochelle, 2009, Amine scrubbing for CO2 capture, Science (80-.), 325, 1652, 10.1126/science.1176731 Rolker, 2006, Abtrennung von Kohlendioxid aus Rauchgasen mittels Absorption, Chemie-Ingenieur-Technik, 78, 416, 10.1002/cite.200600017 Schöny, 2016, Design of a bench scale unit for continuous CO2 capture via temperature swing adsorption-Fluid-dynamic feasibility study, Chem. Eng. Res. Des., 106, 155, 10.1016/j.cherd.2015.12.018 Schöny, 2017, A multi-stage fluidized bed system for continuous CO 2 capture by means of temperature swing adsorption −First results from bench scale experiments, Powder Technol., 316, 519, 10.1016/j.powtec.2016.11.066 Sjostrom, 2010, Evaluation of solid sorbents as a retrofit technology for CO2 capture, Fuel, 89, 1298, 10.1016/j.fuel.2009.11.019 Veneman, 2012, Continuous CO 2 capture in a circulating fluidized bed using supported amine sorbents, Chem. Eng. J., 208, 18, 10.1016/j.cej.2012.06.100 Xu, 2002, Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture, Energy Fuels, 16, 1463, 10.1021/ef020058u Zhang, 2016, Parametric study on the regeneration heat requirement of an amine-based solid adsorbent process for post-combustion carbon capture, Appl. Energy, 168, 394, 10.1016/j.apenergy.2016.01.049